给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
简单合并,sorted一下,再找中间
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
num = nums1 + nums2
num = sorted(num)
n = len(num)
if n%2==0:
return (num[n//2]+num[n//2-1])/2
else:
return num[n//2]
每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
分析:
分析:
f(n,m) 是从0~n-1中找第m个
f(n-1,m) 从0~n-2中找第m个 所以两个函数一样
f’(n-1,m) 是从摘掉某个数之后的序列中找第m个 ,和f(n,m) 不一样。
f(n,m) = f’(n-1,m) = p-1(f(n-1,m))
p(x) = (x-k-1)%m ===>>> 逆函数 p-1(x) = (x+k+1)%m
class Solution:
def LastRemaining_Solution(self, n, m):
# write code here
if n<1 or m<1:
return -1
last=0
for i in range(2,n+1):
last=(last+m)%i
return last