推荐算法(1):协同过滤总结
推荐算法(2):基于内容的推荐
推荐算法(3):利用用户标签数据
推荐算法(4)利用上下文信息
推荐算法(5)利用社交网络数据
推荐算法(6) 实例
推荐算法(7)缺失的评分预测问题
推荐算法(8)评测指标
冷处理
冷处理问题:
1.用户冷处理
2.物品冷处理 (商品本身内容的信息)
3.系统冷处理:如何再一个新开发的网站上设计个性化推荐 (利用用户的社交网络登录,可以引入专家的信息)
用户冷处理:
解决方法:
1.提供非个性化的推荐。为新注册用户推荐热门的商品,等用户数据搜集到一定程度后,切换到个性化推荐;
2.利用用户注册时提供的年龄性别等数据做粗粒度的个性化;
注册信息:
(1).人口信息:年龄、性别、职业、民族、学历、居住地
(2)用户兴趣
(3)其他网站导入
基于注册信息的个性化推荐流程:
(1) 获取用户的注册信息;
(2)利用用户的注册信息对用户进行分类(一个用户根据不同特征会分到不同的类,再将特征进行组合,得到整个的推荐列表);
(3)给用户推荐他所属的所有分类中用户最喜欢的商品。
3.要求用户在登录时对一些商品进行反馈,然后给用户推荐那些与反馈结果好的商品相似的商品;
如何选反馈物品:
(1)比较热门
(2)具有代表性和区分性(如何找到区分度最高的商品:一个商品的区分度D(i)由 三部分用户分别对除i之外的所有商品的评分的 方差累加得到。如果这3类用户集合内的用户对其他的物品兴趣很不一样,说明商品i具有较高的区分度。)
(3)启动物品集合需要多样性
4.利用用户的社交网络登录,导入用户在社交网络的好友信息,为用户推荐其好友喜欢的商品;
5.对于新加入的商品,可以利用商品内容信息,将其推荐给 喜欢过与它们内容类似的商品 的用户;
商品本身内容的信息
6.对于系统冷启动问题,可以引入专家的信息,通过一定的高效方式迅速建立起商品的相关度表;