- 博客(28)
- 收藏
- 关注
原创 【第6篇】AKConv(Arxiv2024):突破传统卷积限制,实现任意形状与参数的灵活特征提取
本文介绍AKConv(Arxiv2024, 由重庆师范大学出品),一种具有任意采样形状和任意参数数量的卷积核操作。针对传统卷积固定采样和参数量平方增长的问题,AKConv通过一种初始坐标生成算法,结合偏移量学习,实现卷积核采样形状和任意参数数目的灵活设置,具有自适应特征提取、参数量线性增长等优势,可作为即插即用的模块应用于形状不规则、姿态多变化、存在遮挡等对性能有要求的业务场景。
2025-12-13 17:53:32
1544
原创 【第5篇】InceptionNeXT(CVPR2024):融合 Inception 思想与现代 CNN 设计的高效特征提取架构
在卷积神经网络(CNN)的发展历程中,大核卷积凭借其强大的长程依赖建模能力成为现代架构设计的核心趋势,但高内存访问成本(MAC)的瓶颈始终制约着模型的实际部署效率。InceptionNeXT 创新性地融合经典 Inception 的多分支思想与 ConvNeXt 的深度卷积优势,提出核心模块 Inception 深度卷积,成功破解大核卷积 “性能与效率不可兼得” 的难题。本文将从模型快速回顾、实验结果验证、核心理论深度解析三个维度,全面拆解这一高效 CNN 架构。
2025-12-02 22:19:08
794
原创 【第7篇】UniConvNet(ICCV2025):在任意卷积网络结构保持渐近高斯分布的同时扩展有效感受野
本文介绍一种新的卷积神经网络架构UniConvNet(ICCV 2025, 由西安交通大学出品),通过合理组合中小尺寸卷积核(如7x7、9x9、11x11)在扩展有效感受野(ERF)的同时保持渐进高斯分布特性(AGD),设计了三层感受野聚合器(RFA)与层级算子(Layer Operator),在多种视觉任务中超越现有的CNN和ViT模型。
2025-11-17 20:53:53
955
原创 【第4篇】InternImage(CVPR2023):探索由可形变卷积构成的纯视觉大模型
本文介绍InternImage(CVPR2023, 由上海人工智能实验室、清华大学等机构的研究人员提出的基于卷积神经网络(CNN)的视觉基础模型)。与基于 Transformer 的网络不同,InternImage 以可变形卷积 DCNv3 作为核心算子,使模型不仅具有检测和分割等下游任务所需的动态有效感受野,而且能够进行自适应的空间聚合。
2025-10-14 16:32:57
887
原创 【第1篇】YOLOv8改进系列:替换主干网络之Fasternet(CVPR2023)
基于Ultralytics框架YOLO模型改进方案:由香港科技大学出品的FasterNet;通过本篇,您将了解FasterNet的基本原理,以及基于Ultralytics框架添加主干网络的基本方法。
2025-09-30 16:38:34
1058
原创 【第3篇】FasterNet(CVPR2023):基于部分卷积PConv,打造更快精度更高更具成本效益的神经网络!
本文介绍FasterNet(CVPR2023, 由香港科技大学出品),一种基于部分卷积网络PConv的新网络,模型的动机在于减少计算冗余和内存访问提升更快的速度同时,保持更高的精度。PConv通过仅对特征中的部分通道应用常规卷积,有效地降低了FLOPs,提高了计算效率。实验结果显示,FasterNet在GPU、CPU和ARM处理器上均表现出优于MobileViT的性能,同时保持了高精度。
2025-04-29 13:06:13
2183
原创 【第2篇】ConvNeXT(CVPR2022) 力压Transformer,卷积网络还能再战!
ConvNext是一个向Transformer看齐的卷积神经网络,作者以ResNet为起源,参照Transformer、ResNeXT、以及MobileNetv2的一些结构特性进行模型结构的调整,取得了不错的指标(超越Swin)
2025-04-23 17:02:28
1481
原创 【第1篇】YOLOMS:多尺度特征表示与大核卷积完美融合
YOLOMS整体网络结构可以看作是在RTMDet结构框架上重新设计backbone和Neck的模型。MS-Block的设计综合了Res2Net的多层特征融合策略和大kernel卷积,同时结合Inverted BottleNeck Block进行计算开销的平衡;该设计能够让特征在不同维度分别具有不同的尺度信息,在一定程度上,降低了特征不同通道之间的冗余性,丰富了特征的粒度。另一方面,对MS-Block中的kxk卷积核的选择进行了进一步思考。提出了随着网络的加深逐渐增加卷积kernel-size尺寸的思路。
2024-10-24 15:42:26
1799
原创 PyTorch 核心方法:state_dict ()、parameters () 参数打印与应用
本文以LeNet-5模型为例,介绍了PyTorch中三种获取模型参数的方法:state_dict()返回有序字典形式的参数名称和张量;parameters()生成器仅包含参数信息;named_parameters()生成器同时提供模型名称和参数。通过代码示例展示了各方法的输出格式,并演示了如何利用named_parameters()进行模型参数冻结操作。这些方法为模型分析、参数调整和迁移学习提供了便利工具,适用于深度学习模型的调试和优化过程。
2025-12-11 17:59:53
998
原创 【第4篇】TypeError: canonicalize_version() got an unexpected keyword argument ‘strip_trailing_zero‘
setuptools版本过高的报错情况。
2025-12-11 17:44:28
368
原创 18.mmdetection常用技巧之FP16混合精度训练配置及训练不稳定问题的解决方案
基于MMDetection FP16混合精度训练的配置方案。以及训练过程中,出现非数据问题的长期不可逆`NAN`问题的解决方案。
2025-12-11 17:32:56
184
原创 【第3篇】AttributeError: ‘MinimalDistribution‘ object has no attribute ‘_referenced_files‘
AttributeError: 'MinimalDistribution' object has no attribute '_referenced_files'报错的解决方案。
2025-12-11 17:05:46
314
原创 【第2篇】RuntimeError: nms_impl: implementation for device cuda:0 not found.
本文主要介绍 MMDetection 训练框架时出现的RuntimeError: nms_impl: implementation for device cuda:0 not found.错误的解决方案。该错误发生在 CUDA 设备上运行非极大抑制(NMS)操作时,系统无法找到对应的 CUDA 实现,且存在 PyTorch 能正确识别 CUDA 设备、已安装 mmcv-full 但仍出现问题的情况。
2025-12-11 16:58:21
209
原创 (一) Python基础
Python是一种动态、解释型的强类型语言,具有简洁灵活的语法特点。文章介绍了Python的核心特性,包括变量声明规则、多种赋值方式(解包、连续赋值等)、变量命名规范、类型注解方法,以及注释、输入输出等基础语法。同时比较了解释型与编译型语言、动态与静态语言的差异,并初步讲解了数字、布尔值、字符串等基本数据类型。Python的优势在于其丰富的标准库和强大的灵活性,适合快速开发和跨平台应用。
2025-11-17 22:13:58
780
原创 特征匹配(一):GMS Grid-BasedMotionStatistics及代码复现
GMS Grid 特征匹配论文解读及相机偏移检测代码基本实现。
2025-09-26 16:07:08
781
原创 【第1篇】AssertionError: loss log variables are different across GPUs!
mmdetection多卡训练时,不同GPU损失不一致报错的解决方案。
2025-09-26 14:40:03
977
原创 01.初入MMDetection之轻松掌握模型训练、跟踪及评估
根据搭建好的基础环境启动第一个模型训练,并对训练好的模型进行评估。通过本篇博客的学习,您将掌握mmdetection训练过程中:a. 数据集的准备;b. 配置文件内容的修改; c. 单卡/多卡训练;d. 训练过程中日志输出解析; e. 训练精度可视化。走通模型训练、验证、测试的整个流程
2025-06-16 09:40:16
986
1
原创 【故障诊断】Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learn
使用Siamese网络实现轴承故障诊断
2025-04-29 14:57:51
1094
原创 00.初入MMDetection之轻松掌握运行环境安装,实现模型推理
本篇作为本专栏的第一节,主要带领大家在ubuntu上【从零搭建mmdetection基础环境】,获取预训练模型,熟悉mmdetection推理的基础操作,跑通单张图像的推理和批量推理。
2025-04-28 11:32:53
301
原创 华为昇腾Ascend系列之02ModelZoo训练环境搭建
华为昇腾Ascend ModelZoo训练环境搭建。在Miniconda中安装torch、torch_npu,并解决遇到的问题。
2025-02-19 17:29:55
2865
1
原创 【NVIDIA-SMI】服务器重启,内核升级,NVIDIA-SMI不可用
服务器重启nvidia-smi报错的解决方案NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
2025-02-07 17:22:34
699
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅