OpenMMLab简介

Github链接https://github.com/open-mmlab官网链接https://openmmlab.com

目录

目标检测算法库MMDetection

目标检测算法库MMYOLO

 文字检测识别算法库MMOCR

3D目标检测算法库MMDetection3D

旋转目标检测算法库MMRotate

图像分割算法库MMSegmentation

图像分类+预训练+多模态算法库MMPretrain

姿态估计算法库MMPose

三维人体姿态估计算法库MMHuman3D

视频动作识别算法库MMAction

目标追踪MMTracking

生成模型+底层视觉+AIGC算法库MMagic

模型部署工具箱MMDeploy

趣味应用游乐场Playground


算法库详解

目标检测算法库MMDetection

MMDetectionhttp://github.com/open-mmlab/mmdetection

MMDetection 支持了各种不同的检测任务,包括目标检测实例分割全景分割,以及半监督目标检测。可以按照自己需求做自己的数据集并使用现有的框架快速训练、推理。

 算法框架

Object DetectionInstance SegmentationPanoptic SegmentationOther

模块组件

BackbonesNecksLossCommon

目标检测算法库MMYOLO

MMYOLO 中目前实现了目标检测和旋转框目标检测算法,但是相比 MMDeteciton 版本有显著训练加速,训练速度相比原先版本提升 2.6 倍。

MMYOLOhttps://github.com/open-mmlab/mmyolo

 文字检测识别算法库MMOCR

MMOCRhttps://github.com/open-mmlab/mmocr

专注于文本检测,文本识别以及相应的下游任务,如关键信息提取。 它是 OpenMMLab 项目的一部分。兼容中文,英文和数字。

 3D目标检测算法库MMDetection3D

MMDection3Dhttps://github.com/open-mmlab/mmdetection3d

面向 3D 检测的平台

 旋转目标检测算法库MMRotate

适合目标检测的框有方向的任务
GitHub - open-mmlab/mmrotate: OpenMMLab Rotated Object Detection Toolbox and BenchmarkOpenMMLab Rotated Object Detection Toolbox and Benchmark - GitHub - open-mmlab/mmrotate: OpenMMLab Rotated Object Detection Toolbox and Benchmarkhttps://github.com/open-mmlab/mmrotate

图像分割算法库MMSegmentation

 语义分割,适合街景,无人驾驶,理疗影像等任务GitHub - open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark.OpenMMLab Semantic Segmentation Toolbox and Benchmark. - GitHub - open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark.https://github.com/open-mmlab/mmsegmentation

 图像分类+预训练+多模态算法库MMPretrain

GitHub - open-mmlab/mmpretrain: OpenMMLab Pre-training Toolbox and BenchmarkOpenMMLab Pre-training Toolbox and Benchmark. Contribute to open-mmlab/mmpretrain development by creating an account on GitHub.https://github.com/open-mmlab/mmpretrain

  • 图像分类:输入图像,AI给出类别的概率,概率最高的就是最后的类型
  • 图像描述(Image Caption):输入图片,AI使用文字描述图片
  • 视觉问答(Visual Question Answering):输入图片,问AI一个问题,AI根据图片给出答案
  • 视觉定位(Visual Grounding):输入图片,给出提示提,AI根据提示词换出框
  • 检索(图搜图,图搜文,文搜图)

 姿态估计算法库MMPose

GitHub - open-mmlab/mmpose: OpenMMLab Pose Estimation Toolbox and Benchmark.OpenMMLab Pose Estimation Toolbox and Benchmark. Contribute to open-mmlab/mmpose development by creating an account on GitHub.https://github.com/open-mmlab/mmpose

 除了人体关键提检测也可以做自己标注数据的关键点检测

 三维人体姿态估计算法库MMHuman3D

GitHub - open-mmlab/mmhuman3d: OpenMMLab 3D Human Parametric Model Toolbox and BenchmarkOpenMMLab 3D Human Parametric Model Toolbox and Benchmark - GitHub - open-mmlab/mmhuman3d: OpenMMLab 3D Human Parametric Model Toolbox and Benchmarkhttps://github.com/open-mmlab/mmhuman3d

 视频动作识别算法库MMAction2

动作识别,时序动作检测,时空动作检测以及基于人体姿态的动作识别

GitHub - open-mmlab/mmaction2: OpenMMLab's Next Generation Video Understanding Toolbox and BenchmarkOpenMMLab's Next Generation Video Understanding Toolbox and Benchmark - GitHub - open-mmlab/mmaction2: OpenMMLab's Next Generation Video Understanding Toolbox and Benchmarkhttps://github.com/open-mmlab/mmaction2

无法通过单帧画面,需要结合上下文判断

目标追踪MMTracking

 支持视频目标检测,多目标跟踪,单目标跟踪和视频实例分割等多种任务和算法。

GitHub - open-mmlab/mmtracking: OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework. - GitHub - open-mmlab/mmtracking: OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.https://github.com/open-mmlab/mmtracking

生成模型+底层视觉+AIGC算法库MMagic

支持了流行的图像修复、图文生成、3D生成、图像修补、抠图、超分辨率和生成等任务的应用。 支持 Stable Diffusion 的微调和ControlNet 动画生成。也支持 GANs 的插值,投影,编辑和其他流行的应用。

  • 文生图,图生图,图像填充(inpainting)
  • 图像去噪,重建,超分辨率,去雾
  • 视频插帧,超分辨率
  • 黑白老照片上色
  • Matting(抠人)

GitHub - open-mmlab/mmagic: OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox. Unlock the magic 🪄: Generative-AI (AIGC), easy-to-use APIs, awsome model zoo, diffusion models, image/video restoration/enhancement, etc.OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox. Unlock the magic 🪄: Generative-AI (AIGC), easy-to-use APIs, awsome model zoo, diffusion models, image/video restoration/enhancement, etc. - GitHub - open-mmlab/mmagic: OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox. Unlock the magic 🪄: Generative-AI (AIGC), easy-to-use APIs, awsome model zoo, diffusion models, image/video restoration/enhancement, etc.https://github.com/open-mmlab/mmagic

模型部署工具箱MMDeploy

为各算法库提供统一的部署体验

open-mmlab/mmdeploy: OpenMMLab Model Deployment Framework (github.com)https://github.com/open-mmlab/mmdeploy

趣味应用游乐场Playground

一个用于收集和展示 OpenMMLab 相关前沿和有趣应用的项目

https://github.com/open-mmlab/playgroundhttps://github.com/open-mmlab/playground

### OpenMMLab 超分辨率工具箱简介 OpenMMLab 是由开放多媒体实验室开发的一系列开源项目集合,涵盖了计算机视觉领域的多个方向。其中,超分辨率工具箱(MMEditing)是一个专注于图像编辑任务的框架,支持多种超分辨率算法实现[^3]。 #### 工具箱的主要功能 MMEditing 提供了丰富的超分辨率模型实现,包括但不限于 ESRGAN、RRDBNet 和 SRCNN 等经典网络结构。这些模型能够显著提升低分辨率图像的质量,适用于医学影像处理、视频增强等多个领域[^4]。 以下是 MME Editing 的一些核心特性: - **模块化设计**:允许用户轻松定制和扩展不同的组件。 - **多任务支持**:除了超分辨率外,还支持修复、去噪等多种图像编辑任务。 - **高性能训练与推理**:通过 PyTorch 实现高效计算,并提供分布式训练选项。 #### 安装指南 为了使用该工具箱,需先安装必要的依赖环境。推荐按照官方文档中的说明操作: ```bash git clone https://github.com/open-mmlab/mmediting.git cd mmediting pip install -r requirements.txt pip install mmcv-full==latest+torch1.8.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html pip install . ``` 上述命令会克隆仓库并完成基础配置[^5]。 #### 使用方法 运行预定义的超分辨率脚本非常简单。例如,加载已训练好的 ESRGAN 模型并对单张图片执行测试: ```python from mmedit.apis import init_model, restoration_inference import cv2 config_file = 'configs/restorers/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py' checkpoint_file = 'https://download.openmmlab.com/mmediting/restoration/gan/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k_20220731-f9ebd7df.pth' model = init_model(config_file, checkpoint=checkpoint_file) result = restoration_inference(model, ['test_image.png']) output_img = result[0].cpu().numpy() # 将结果转换为 NumPy 数组 cv2.imwrite('super_resolved_output.png', output_img) ``` 此代码片段展示了如何初始化模型以及对输入图像应用超分辨率技术[^6]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值