构建自己的图像分类数据集

该文章介绍了如何在两天内构建自己的图像分类数据集,强调了数据集的质量要点,如删除无关图片、保持类型均衡、确保多样性和一致性。作者提供了GitHub代码链接,涵盖了数据集划分、训练、评估、测试和部署AI模型的全过程,并特别提醒注意防止过拟合和处理OOD问题。
摘要由CSDN通过智能技术生成

构建自己的图像分类数据集【两天搞定AI毕设】_哔哩哔哩_bilibili

github代码地址:GitHub - TommyZihao/Train_Custom_Dataset: 标注自己的数据集,训练、评估、测试、部署自己的人工智能算法

图像分类数据集的注意事项

删除无关图片

类型均衡

多样性、代表性、一致性

数据集应尽可能包括目标物体的各类场景,训练出的图像分类模型才能在各类测试场景中具备好的泛化性能,防止过拟合。
        不同尺寸、比例的图像
        不同拍摄环境(光照、设备、拍摄角度、挡、远近、大小)
        不同形态(完整西瓜、切西瓜、切块西瓜)
        不同部位(全瓜、瓜皮、瓜、瓜子)
        不同时期(瓜秧、小瓜、大瓜)
        不同背景(人物、菜地、图)
        不同图像域《照片、漫画、剪贴画、油画)
如果训练集的图像分布与测试集(或真实测试场景)的图像分布不一致,会出现OOD(Out-Of-Distribution) 问题

Train_Custom_Dataset/【D】划分训练集测试集.ipynb at main · TommyZihao/Train_Custom_Dataset · GitHub

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值