基尼指数

本文详细解释了基尼指数的概念,这是一种衡量不平等分配的指标,常用于经济学和机器学习中的决策树算法。基尼指数范围在0到1之间,数值越大表示数据集的混乱程度越高。同时,对比了基尼指数与熵作为分类标准的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基尼指数

定义

  • 是一种不等性度量;
  • 通常用来度量收入不平衡,可以用来度量任何不均匀分布;
  • 是介于0~1之间的数,0-完全相等,1-完全不相等;
  • 总体内包含的类别越杂乱,基尼指数就越大

基尼不纯度指标

在CART算法中, 基尼不纯度表示一个随机选中的样本在子集中被分错的可能性。基尼不纯度为这个样本被选中的概率乘以它被分错的概率。当一个节点中所有样本都是一个类时,基尼不纯度为零。 
假设y的可能取值为{1, 2, …, m},令fifi是样本被赋予i的概率,则基尼指数可以通过如下计算: 

cart分类书中的基尼指数

如果训练数据集D根据特征A是否取某一可能值a被分割为D1D1和D2D2两部分,则在特征A的条件下,集合D的基尼指数定义为 

基尼指数Gini(D)表示集合D的不确定性,基尼指数Gini(D,A)表示经过A=a分割后集合D的不确定性。基尼指数越大,样本的不确定性也就越大。

熵VS基尼指数

随机变量的熵表达形式 

随机变量的基尼系数表达形式 

主要区别在于,熵达到峰值的过程要相对慢一些。因此,熵对于混乱集合的判罚要更重一些。 
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值