数论 计算模m的k次根

计算模m的k次根

问题描述

已知   

gcd(b,m)=1,gcd(k,ϕ(m))=1 g c d ( b , m ) = 1 , g c d ( k , ϕ ( m ) ) = 1
xk=b(mod m) x k = b ( m o d   m )

求 x

  1. ϕ(m) ϕ ( m )
  2. 用欧几里得扩展求使得 kuϕ(m)v=1 k u − ϕ ( m ) v = 1 的u值
  3. 用快速幂求得 x=bumod m x = b u ( m o d   m )

证明

xku(mod m)=xϕ(m)v+1(mod m)=x x k u ( m o d   m ) = x ϕ ( m ) v + 1 ( m o d   m ) = x
xku(mod m)=bu(modm) x k u ( m o d   m ) = b u ( m o d m )
x=bu(mod m) x = b u ( m o d   m )
注意要求 gcd(k,ϕ(m))==1 g c d ( k , ϕ ( m ) ) == 1 ,如果 gcd(k,phi(m))1 g c d ( k , p h i ( m ) ) ≠ 1 ,则说明模m的k次方根不存在或者大于一个

代码参考


// How to calculate x^k (mod p) =  
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
void extgcd(long long a,long long b,long long &x,long long &y)
{
    if(b == 0) x = 1,y = 0;
    else{
        extgcd(b,a%b,y,x);
        y -= a/b*x;
    }
}
long long Phi(LL n)
{
   long long ans = n;
   for(int i = 2;i < n; ++i){
      if(n%i==0) {
            ans = ans/i*(i-1);
           while(n % i == 0) n /= i;
         }
   }
   if(n != 1)
      ans = ans/n*(n-1); 
   return ans;
}
long long qpow(long long a,long long b,long long m){
    long long ans = 1;
    a %= m;
    while(b>0){
        if(b&1) ans = ans*a%m;
        a = a*a%m;
        b >>= 1;
    }
    return ans;
}

int main(void)
{
//  init();
   LL x,k,b,m;
   LL xx,yy;
   while(cin>>k>>b>>m){
        long long Phim = Phi(m);
//          cout<<Phim<<endl;
        extgcd(k,Phim,xx,yy); 
        xx = (xx%Phim+Phim)%Phim;
        cout<<xx<<endl;
        x = qpow(b,xx,m);
        cout<<x<<endl;
        cout<<qpow(x,k,m)<<endl;
   }
   return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值