初等数论--原根--a^k对模m的阶

本文介绍了初等数论中的概念——阶和原根,特别是讨论了a^k对模m的阶ordm(ak)。作者指出当ad≡1(modm)时,ordm(a)整除d,并给出了证明。还探讨了ordm(ak)与ordm(a)和k的关系,得出ordm(ak)=(ordm(a),k),为理解数论中的这些重要概念提供了清晰的解释。" 88638437,6776484,MAC环境ELK日志管理套件搭建指南,"['日志管理', 'Elasticsearch', 'Logstash', 'Kibana', 'MAC环境']
摘要由CSDN通过智能技术生成

博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。

  • 阶: m m m是正整数, ( a , m ) = 1 (a,m)=1 (a,m)=1,使得 a d ≡ 1 ( m o d m ) a^d\equiv 1(mod m) ad1(modm)满足的最小正整数 d d d,称为 a a a对模 m m m的阶,记为 o r d m ( a ) 。 ord_m(a)。 ordm(a)
  • 原根:如果 o r d m ( a ) = φ ( m ) , ord_m(a)=\varphi(m), ordm(a)=φ(m),那么我们称 a a a是模 m m m的原根。
  • 一个小定理: m m m是正整数, ( a , m ) = 1 (a,m)=1 (a,m)=1,如果 a d ≡ 1 ( m o d m ) , a^d\equiv 1(mod m), ad1(modm),那么 o r d m ( a ) ∣ d 。 ord_m(a)\mid d。 ordm(a)d

证明:我们有 d = o r d m ( a ) ⋅ q + r , ∃ q , r ∈ Z , 0 ≤ r < o r d m ( a ) , d=ord_m(a)·q+r,{\exists}q,r\in Z,0\le r<ord_m(a), d=ordm(a)q+r,q,rZ,0r<ordm(a),

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值