一份王者荣耀的英雄数据报告

本文通过数据分析,揭示了王者荣耀中英雄定位分布、移动速度、血量及物理防御等特性,结合18183游戏网数据,推荐了各定位的强势英雄。

咪哥杂谈

本篇阅读时间约为 6 分钟。

1

前言

前一阵写了关于王者的一些系列文章,从数据的获取到数据清洗,数据落地,都是为了本篇的铺垫。

今天来实现一下,看看不同维度得到的结论。

2

环境准备

本次实验用到的图形库为 pyecharts 。

pip install pyecharts

Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。

而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

github - pyecharts 官网文档

以下实验环境,均处于 Jupyter Notebook 中,关于 Jupter Notebook 安装教程,移步:

https://zhuanlan.zhihu.com/p/54302333

知乎

3

数据分析的两个概念

数据分析里,先来了解下两个比较基础的概念:维度(Dimensions) 和度量(Measures)。

如果你用过可视化的工具,一定对其不陌生,比如 Tableau、Kibana等。

简单的来说,度量描述的是数据表中的数值数据,而维度描述的则是类别数据。

举个栗子。

假设你家是开商店的,每个季度要对不同商品进行销售额统计。

我们常见的一些有含义的名词、时间、地理位置等离散型数据适用于维度。

那这里的商品名称,如苹果,梨,栗子等可以作为维度。

连续型数据适用于度量,如数字。

此时,这些不同商品的卖出数量,则作为度量。

4

荣耀分析

明白了上述概念,下面分别定下不同的维度来进行分析做图。

PS: 关于 pyecharts 的代码不进行贴出,后续给出源码地址。

1. 王者荣耀中,英雄不同定位,英雄数量分别是多少?

根据读取 Excel 中 position ,获取不同英雄定位的数量。

评论 19
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值