咪哥杂谈

本篇阅读时间约为 6 分钟。
1
前言
前一阵写了关于王者的一些系列文章,从数据的获取到数据清洗,数据落地,都是为了本篇的铺垫。
今天来实现一下,看看不同维度得到的结论。
2
环境准备
本次实验用到的图形库为 pyecharts 。
pip install pyecharts
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。
而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
github - pyecharts 官网文档
以下实验环境,均处于 Jupyter Notebook 中,关于 Jupter Notebook 安装教程,移步:
https://zhuanlan.zhihu.com/p/54302333
知乎
3
数据分析的两个概念
数据分析里,先来了解下两个比较基础的概念:维度(Dimensions) 和度量(Measures)。
如果你用过可视化的工具,一定对其不陌生,比如 Tableau、Kibana等。
简单的来说,度量描述的是数据表中的数值数据,而维度描述的则是类别数据。
举个栗子。

假设你家是开商店的,每个季度要对不同商品进行销售额统计。
我们常见的一些有含义的名词、时间、地理位置等离散型数据适用于维度。
那这里的商品名称,如苹果,梨,栗子等可以作为维度。
连续型数据适用于度量,如数字。
此时,这些不同商品的卖出数量,则作为度量。
4
荣耀分析
明白了上述概念,下面分别定下不同的维度来进行分析做图。
PS: 关于 pyecharts 的代码不进行贴出,后续给出源码地址。
1. 王者荣耀中,英雄不同定位,英雄数量分别是多少?
根据读取 Excel 中 position ,获取不同英雄定位的数量。

本文通过数据分析,揭示了王者荣耀中英雄定位分布、移动速度、血量及物理防御等特性,结合18183游戏网数据,推荐了各定位的强势英雄。
最低0.47元/天 解锁文章
2万+





