函数
反 比 例 函 数 : y = a x ( a ≠ 0 ) , ∣ a ∣ 越 大 , 图 像 距 离 原 点 越 远 反比例函数: y=\frac{a}{x} (a\neq0),\vert a\vert 越大,图像距离原点越远 反比例函数:y=xa(a̸=0),∣a∣越大,图像距离原点越远
正
比
例
函
数
:
y
=
a
x
正比例函数: y=ax
正比例函数:y=ax
一
次
函
数
y
=
a
x
+
b
,
X
截
距
(
−
b
k
,
0
)
,
Y
截
距
(
0
,
b
)
一次函数 y=ax+b, X截距(-\frac{b}{k}, 0), Y截距(0, b)
一次函数y=ax+b,X截距(−kb,0),Y截距(0,b)
直
线
的
一
般
表
示
形
式
a
x
+
b
y
+
c
=
0
(
a
b
≠
0
)
,
X
截
距
(
−
c
a
,
0
)
,
Y
截
距
(
0
,
−
c
b
)
直线的一般表示形式 ax+by+c = 0(ab \neq 0),X截距(-\frac{c}{a}, 0), Y截距(0, -\frac{c}{b})
直线的一般表示形式ax+by+c=0(ab̸=0),X截距(−ac,0),Y截距(0,−bc)
二
次
函
数
:
y
=
a
x
2
,
y
=
a
(
x
−
p
)
2
(
对
称
轴
x
=
p
)
,
y
=
(
x
−
p
)
2
+
q
(
顶
点
:
(
p
,
q
)
)
二次函数: y=ax^2,y=a(x-p)^2(对称轴 x=p),y=(x-p)^2+q(顶点:(p, q))
二次函数:y=ax2,y=a(x−p)2(对称轴x=p),y=(x−p)2+q(顶点:(p,q))
y
=
a
x
2
+
b
x
+
c
=
(
x
+
b
2
a
)
2
+
4
a
c
−
b
2
4
a
(
顶
点
:
(
−
b
2
a
,
4
a
c
−
b
2
4
a
)
)
y=ax^2+bx+c=(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}(顶点:(-\frac{b}{2a}, \frac{4ac-b^2}{4a}))
y=ax2+bx+c=(x+2ab)2+4a4ac−b2(顶点:(−2ab,4a4ac−b2))
取整函数(高斯函数)
n
≤
x
<
n
+
1
,
[
x
]
=
n
n \le x < n+1, [x]=n
n≤x<n+1,[x]=n
对数函数:
N
=
a
1
0
n
N = a 10^n
N=a10n
l
g
N
=
首
数
+
尾
数
lg N = 首数+尾数
lgN=首数+尾数
l
g
N
=
n
+
l
o
g
a
lg N = n + log a
lgN=n+loga
对数性质
(
1
)
log
a
a
=
1
,
log
a
1
=
0
(1) \log_{a}a = 1, \log_{a}1 = 0
(1)logaa=1,loga1=0
(
2
)
log
a
x
y
=
log
a
x
+
log
a
y
(2) \log_{a}xy = \log_{a}x +\log_{a}y
(2)logaxy=logax+logay
(
3
)
log
a
x
y
=
log
a
x
−
log
a
y
(3) \log_{a}\frac{x}{y}=\log_{a}x - \log_{a}y
(3)logayx=logax−logay
(
4
)
log
a
x
p
=
p
log
a
x
(4) \log_{a}x^p =p\log_{a}{x}
(4)logaxp=plogax
换底公式
log
a
b
=
log
c
b
log
c
a
\log_a b = \frac{\log_c b}{\log_c a}
logab=logcalogcb
log
a
b
=
1
log
b
a
\log_a b = \frac{1}{\log_b a}
logab=logba1
其他性质
log
a
m
b
n
=
n
m
log
a
b
\log_{a^m} b^n=\frac{n}{m} \log_a b
logambn=mnlogab
log
a
m
b
=
1
m
log
a
b
\log_{a^m}b = \frac{1}{m} \log_a b
logamb=m1logab
a
log
c
b
=
b
log
c
a
a^{\log_c b} = b^{\log_c a}
alogcb=blogca
几何:
曲 率 = 1 曲 率 半 径 曲率 = \frac{1}{曲率半径} 曲率=曲率半径1
几种曲线
悬链线
摆线
阿基米德螺旋线:
r
=
a
θ
,
旋
转
一
周
半
径
按
照
等
差
数
列
增
长
r = a \theta, 旋转一周半径按照等差数列增长
r=aθ,旋转一周半径按照等差数列增长
对数螺旋线(蜗牛,海螺):过任意一点p的切线与极点o和p连线的夹角
α
总
是
不
变
,
\alpha 总是不变,
α总是不变,
r
=
k
e
c
θ
,
θ
=
a
r
c
c
o
t
α
r = ke^{c\theta}, \theta = arccot \alpha
r=kecθ,θ=arccotα