函数

函数

反 比 例 函 数 : y = a x ( a ≠ 0 ) , ∣ a ∣ 越 大 , 图 像 距 离 原 点 越 远 反比例函数: y=\frac{a}{x} (a\neq0),\vert a\vert 越大,图像距离原点越远 y=xa(a̸=0),a

正 比 例 函 数 : y = a x 正比例函数: y=ax y=ax
一 次 函 数 y = a x + b , X 截 距 ( − b k , 0 ) , Y 截 距 ( 0 , b ) 一次函数 y=ax+b, X截距(-\frac{b}{k}, 0), Y截距(0, b) y=ax+b,X(kb,0),Y(0b)
直 线 的 一 般 表 示 形 式 a x + b y + c = 0 ( a b ≠ 0 ) , X 截 距 ( − c a , 0 ) , Y 截 距 ( 0 , − c b ) 直线的一般表示形式 ax+by+c = 0(ab \neq 0),X截距(-\frac{c}{a}, 0), Y截距(0, -\frac{c}{b}) 线ax+by+c=0(ab̸=0),X(ac,0),Y(0,bc)

二 次 函 数 : y = a x 2 , y = a ( x − p ) 2 ( 对 称 轴 x = p ) , y = ( x − p ) 2 + q ( 顶 点 : ( p , q ) ) 二次函数: y=ax^2,y=a(x-p)^2(对称轴 x=p),y=(x-p)^2+q(顶点:(p, q)) y=ax2,y=a(xp)2(x=p),y=(xp)2+q((p,q))
y = a x 2 + b x + c = ( x + b 2 a ) 2 + 4 a c − b 2 4 a ( 顶 点 : ( − b 2 a , 4 a c − b 2 4 a ) ) y=ax^2+bx+c=(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}(顶点:(-\frac{b}{2a}, \frac{4ac-b^2}{4a})) y=ax2+bx+c=(x+2ab)2+4a4acb2((2ab,4a4acb2))

取整函数(高斯函数)
n ≤ x &lt; n + 1 , [ x ] = n n \le x &lt; n+1, [x]=n nx<n+1,[x]=n

对数函数:
N = a 1 0 n N = a 10^n N=a10n
l g N = 首 数 + 尾 数 lg N = 首数+尾数 lgN=+
l g N = n + l o g a lg N = n + log a lgN=n+loga

对数性质

( 1 ) log ⁡ a a = 1 , log ⁡ a 1 = 0 (1) \log_{a}a = 1, \log_{a}1 = 0 (1)logaa=1,loga1=0
( 2 ) log ⁡ a x y = log ⁡ a x + log ⁡ a y (2) \log_{a}xy = \log_{a}x +\log_{a}y (2)logaxy=logax+logay
( 3 ) log ⁡ a x y = log ⁡ a x − log ⁡ a y (3) \log_{a}\frac{x}{y}=\log_{a}x - \log_{a}y (3)logayx=logaxlogay
( 4 ) log ⁡ a x p = p log ⁡ a x (4) \log_{a}x^p =p\log_{a}{x} (4)logaxp=plogax

换底公式

log ⁡ a b = log ⁡ c b log ⁡ c a \log_a b = \frac{\log_c b}{\log_c a} logab=logcalogcb
log ⁡ a b = 1 log ⁡ b a \log_a b = \frac{1}{\log_b a} logab=logba1

其他性质

log ⁡ a m b n = n m log ⁡ a b \log_{a^m} b^n=\frac{n}{m} \log_a b logambn=mnlogab
log ⁡ a m b = 1 m log ⁡ a b \log_{a^m}b = \frac{1}{m} \log_a b logamb=m1logab
a log ⁡ c b = b log ⁡ c a a^{\log_c b} = b^{\log_c a} alogcb=blogca

几何:

曲 率 = 1 曲 率 半 径 曲率 = \frac{1}{曲率半径} =1

几种曲线

悬链线
摆线
阿基米德螺旋线: r = a θ , 旋 转 一 周 半 径 按 照 等 差 数 列 增 长 r = a \theta, 旋转一周半径按照等差数列增长 r=aθ,
对数螺旋线(蜗牛,海螺):过任意一点p的切线与极点o和p连线的夹角 α 总 是 不 变 , \alpha 总是不变, α,
r = k e c θ , θ = a r c c o t α r = ke^{c\theta}, \theta = arccot \alpha r=kecθ,θ=arccotα

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值