一起学习机器学习
文章平均质量分 97
AWS加油站
️亚马逊云科技技术支持
亚马逊云科技技领博主
10X Cloud Certification
5X Amazon Certification
展开
-
13. 一起学习机器学习 PCA
The purpose of this notebook is to understand and implement two linear dimensionality reduction methods:The main idea of these methods is to approximate our data by a linear combination of a few components, which span the space for a low-dimensional repres原创 2024-03-26 21:27:17 · 1131 阅读 · 0 评论 -
14. 一起学习机器学习 Graph-based learning
【代码】14. 一起学习机器学习 Graph-based learning。原创 2024-03-26 21:13:05 · 997 阅读 · 0 评论 -
11. 一起学习机器学习 Kmeans + Hierarchical Clustering
k。原创 2024-03-26 21:03:38 · 877 阅读 · 0 评论 -
12. 一起学习机器学习Clustering using Gaussian Mixture Models
【代码】12. 一起学习机器学习Clustering using Gaussian Mixture Models。原创 2024-03-26 21:02:03 · 1137 阅读 · 0 评论 -
10. 一起学习机器学习 -- Convolutional Neural Networks (CNNs)
torch。原创 2024-03-26 20:53:17 · 1270 阅读 · 0 评论 -
9.一起学习机器学习 -- Multilayer Perceptron (MLP)
The purpose of this notebook is to practice implementing the multilayer perceptron (MLP) model from scratch.The MLP is a type of neural network model, that composes multiple affine transformations together, and applying a pointwise nonlinearity in between.原创 2024-03-26 20:43:37 · 1278 阅读 · 1 评论 -
8.一起学习机器学习 -- Stochastic Gradient Descent
The purpose of this notebook is to practice implementing the stochastic gradient descent (SGD) optimisation algorithm from scratch.We consider a linear regression problem of the formy=β0+xβ1+ϵ ,ϵ∼N(0,σ2)y = \beta_0 + x \beta_1 + \epsilon\,,\quad \epsil原创 2024-03-26 20:09:08 · 982 阅读 · 0 评论 -
7.一起学习机器学习 -- Support Vector Machines (SVMs)¶
【代码】7.一起学习机器学习 -- Support Vector Machines (SVMs)¶。原创 2024-03-26 20:06:10 · 1337 阅读 · 2 评论 -
6.一起学习机器学习 -- Decision_trees and Random_Forest
【代码】6.一起学习机器学习 -- Decision_trees and Random_Forest。原创 2024-03-26 19:55:29 · 1182 阅读 · 0 评论 -
4. 一起学习机器学习 -- Logistic regression
【代码】4. 一起学习机器学习 -- Logistic regression。原创 2024-03-26 19:51:22 · 1359 阅读 · 0 评论 -
5. 一起学习机器学习 -- Naive Bayes
Naive Bayes is a classification algorithm based on Bayes’ theorem. Bayes’ theorem provides a way to calculate the probability of a data point belonging to a given class, given our prior knowledge. It is defined asP(class∣data)=P(data∣class) P(class)P(data)原创 2024-03-26 19:44:03 · 1528 阅读 · 0 评论 -
3.一起学习机器学习 - kNN
k。原创 2024-03-25 09:34:07 · 1199 阅读 · 0 评论 -
2.一起学习机器学习 -- Linear_regression
PrerequisitesBasic familiarity with NumpyBasic familiarity with PyplotOutlineSection 0: NumPy Tips and Code ClaritySection 1: Intro to Linear RegressionSection 2: Least Squared Loss and Maximum LikelihoodSection 3: Ridge RegressionSection 4: LAS原创 2024-03-24 10:28:52 · 730 阅读 · 0 评论 -
1. 一起学习机器学习 -- Data_exploration
【代码】1. 一起学习机器学习 -- 数据准备。原创 2024-03-24 10:00:08 · 815 阅读 · 0 评论