【机器学习】:元学习_简介

本文介绍了元学习的基本概念,包括其解决深度学习中超参数选择的问题,机器学习的抽象化过程,以及如何通过元学习找到更好的学习算法。此外,文章还探讨了哪些部分可以被学习,如网络架构、优化器,以及元学习在小样本学习、语音处理和网络架构搜索中的应用。
摘要由CSDN通过智能技术生成

一、元学习基本概念

1、概念:元学习——学习如何学习

2、该理论所解决的问题

深度学习、现代复杂算法最直观的难题:如何确定最好的超参数
怎么办呐?
1、力大砖飞,上硬件枚举
2、随缘(bushi)
3、元学习

3、机器学习抽象化步骤

  1. 定义一个fuction描述未知的过程
  2. 定义一个损失函数,通过训练资料和fuction的交互来指导其迭代
  3. 通过迭代找到哪个最好的超参
4、什么是元学习

数据集—》f(x)----》f‘(x)----》结果
f’的知识是从数据集得来的,f是手调的,f直接影响f’的效果

那么怎么更科学的确定f?

  • 1、 f中什么部分是要被学习的?
    网络架构、初始化参数、学习率-----》统称位learnable components: ϕ \phi ϕ
  • 2、定义一个loss fuc L( ϕ \phi ϕ),描述learning algorithmF‘( ϕ \phi ϕ)的优劣
    要准备训练素材:
    多个训练任务,每个任务,有各自的train和各自的task
    • 用task1中的train,根据F( ϕ \phi ϕ)生成 f’
    • 用task1中的test,测试f’的效果和真值比较(例如用交叉熵损失),得到 l1
    • l1大F差,繁殖同理
    • 用task2、3、4重复类似测试,得到l2、l3、l4
    • L( ϕ \phi ϕ) = ∑ i = 0 n l i \sum_{i=0}^nl_i i=0nli,n是准备任务的数量
      注意这里用的训练任务里面的测试资料去做loss的计算,因为元学习的训练单位是任务,而不是任务中的某一个资料
  • 3、找到一个 ϕ \phi ϕ让L最小
    让L( ϕ \phi ϕ)对 ϕ \phi ϕ求偏导,梯度下降反向传播

这样我们就得到了一个学出来的F‘,而不是手动设置出来的超参

  • 4、用多个【测试任务(注意刚刚的多个任务都是训练任务)的训练数据】集丢到F‘中得到f’,然后用【测试任务的测试数据集去测试】f‘,来评价泛化能力
    【通常情况下,训练任务和测试任务里的各自的train和test在元学习中被成为support set和query set,以避免混淆】
    元学习的优点:可以达成小样本的学习的这个目标
5、机器学习和元学习的联系和异同

ML:
find a f,这个f可以是分类器,也可以是其他功能的fuc,例如可以做猫狗分类。
train—》hand-crafted F–>f
Meta Learning:
find a F,F可以找到比较优质的f,以供多种不同的场景应用,作为一个好的参数起始点
multitasks train(across task training)—》learned F
测试(accross-task testing): testing task中的support set输入F—>f,query set输入f,f执行功能,得到结果(最终评价的是F的好坏,重点不是f)
accross-task testing:包括了with-test taring和within-test testing,算一个任务循环
也就是说,求一次L,要经历一次一个其中一个训练任务的support set训练,然后其相应的query set 训练后,才得到 lx,之后要得到多个 l,加在一起才可以得到L

ML和Meta Learning中共同存在的问题
1、overfitting
2、任务(训练集)越多,效果相对好
3、还是有超参(苦笑)

二、到底什么可以被学习

1、最初初始化的参数 θ \theta θ
MAML: model agnostic Meta-Learning
不同任务分开,进行元学习训练
相似概念:pre-training:
多个任务数据集放一起,然后训练

2、Optimizer
与ADAM,RMSprop,SGD,NAG不同,元学习是学习出来的Optimizer

3、如果 ϕ \phi ϕ是网络架构,那实际上就是NAS
NAS:Network Architecture Search
显然这个 ϕ \phi ϕ无法做梯度下降,所以用RL去做, ϕ \phi ϕ位agent的参数,起输出就是架构参数,训练agent的输出得到minL( ϕ \phi ϕ)

根据架构得到网络,然后训练网络,将测试资料的精确度当作RL的reward,来训练agent,以此迭代

三、应用场景

1、小样本学习
2、语音与自然语言处理等参数的确定
3、NAS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值