1.requests模块:
- 企业中用的最多的就是requests
- requests的底层实现就是urllib
- requests在python2 和python3中通用,方法完全一样
- requests简单易用
- requests能够自动帮助我们解压(gzip压缩的等)响应内容
2.response的常用属性:
- response.text 响应体 str类型
- respones.content 响应体 bytes类型
- response.status_code 响应状态码
- response.request.headers 响应对应的请求头
- response.headers 响应头
- response.request.cookies 响应对应请求的cookie
- response.cookies 响应的cookie(经过了set-cookie动作)
3.response.text 和response.content的区别
3.1 response.text
类型:str
解码类型: requests模块自动根据HTTP 头部对响应的编码作出有根据的推测,推测的文本编码
如何修改编码方式:response.encoding=”gbk”
3.2 response.content
类型:bytes
解码类型: 没有指定
如何修改编码方式:response.content.deocde(“utf8”)
4.获取网页源码的通用方式:
- response.content.decode()
- response.content.decode(“GBK”)
- response.text
以上三种方法从前往后尝试,能够100%的解决所有网页解码的问题
所以:更推荐使用response.content.deocde()的方式获取响应的html页面
举例来说:
import requests
url = 'https://www.baidu.com'
response = requests.get(url)
print(type(response.text))
print(type(response.content))
print(response.status_code)
print(response.headers)
输出结果:
<class 'str'>
<class 'bytes'>
200
{'Cache-Control': 'private, no-cache, no-store, proxy-revalidate,......后面的省略
举例:
把图片保存到本地
分析:
- 图片的url: https://www.baidu.com/img/bd_logo1.png
- 利用requests模块发送请求获取响应
- 以二进制写入的方式打开文件,并将response响应的二进制内容写入
import requests
# 图片的url
url = 'https://www.baidu.com/img/bd_logo1.png'
# 响应本身就是一个图片,并且是二进制类型
response = requests.get(url)
# print(response.content)
# 以二进制+写入的方式打开文件
with open('baidu.png', 'wb') as f:
# 写入response.content bytes二进制类型
f.write(response.content)
5.携带请求头header
格式如下:字典
headers = {“User-Agent”: “Mozilla/5.0 (Windows NT 10.0; Win64; x64)AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36”}
举例:
import requests
url = 'https://www.baidu.com'
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"}
# 在请求头中带上User-Agent,模拟浏览器发送请求
response = requests.get(url, headers=headers)
# print(response.content)
# 打印请求头信息
print(response.request.headers)
6.发送带参数的请求
请求参数的形式:字典
kw = {'wd':'长城'}
用法:
requests.get(url,params=kw)
举例:两种发送带参数的请求
6.1 对https://www.baidu.com/s?wd=python发起请求可以使用requests.get(url, params=kw)的方式
# 方式一:利用params参数发送带参数的请求
import requests
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"}
# 这是目标url
# url = 'https://www.baidu.com/s?wd=python'
# 最后有没有问号结果都一样
url = 'https://www.baidu.com/s?'
# 请求参数是一个字典 即wd=python
kw = {'wd': 'python'}
# 带上请求参数发起请求,获取响应
response = requests.get(url, headers=headers, params=kw)
# 当有多个请求参数时,requests接收的params参数为多个键值对的字典,比如 '?wd=python&a=c'-->{'wd': 'python', 'a': 'c'}
print(response.content)
6.2 也可以直接对https://www.baidu.com/s?wd=python完整的url直接发送请求,不使用params参数
# 方式二:直接发送带参数的url的请求
import requests
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"}
url = 'https://www.baidu.com/s?wd=python'
# kw = {'wd': 'python'}
# url中包含了请求参数,所以此时无需params
response = requests.get(url, headers=headers)
7.使用代理
7.1 代理的作用:
- 让服务器以为不是同一个客户端在请求
- 防止我们的真实地址被泄露,防止被追究
7.2 代理过程:
7.3 正向代理和反向代理的区别:
- 正向代理:对于浏览器知道服务器的真实地址,例如VPN
- 反向代理:浏览器不知道服务器的真实地址,例如nginx
7.4 代理的使用:
proxies = {
"http": "http://12.34.56.79:9527",
"https": "https://12.34.56.79:9527",
}
requests.get(url, proxies = proxies)
7.5 代理IP的分类
根据代理ip的匿名程度,代理IP可以分为下面三类:
-
透明代理(Transparent Proxy):透明代理虽然可以直接“隐藏”你的IP地址,但是还是可以查到你是谁。
-
匿名代理(Anonymous Proxy):使用匿名代理,别人只能知道你用了代理,无法知道你是谁。
-
高匿代理(Elite proxy或High Anonymity Proxy):高匿代理让别人根本无法发现你是在用代理,所以是最好的选择。
在使用的使用,毫无疑问使用高匿代理效果最好
从请求使用的协议可以分为:
- http代理
- https代理
- socket代理等
不同分类的代理,在使用的时候需要根据抓取网站的协议来选择
7.6 代理IP使用的注意点
-
代理ip池的更新
购买的代理ip很多时候大部分(超过60%)可能都没办法使用,这个时候就需要通过程序去检测哪些可用,使用代理ip是非常必要的一种反反爬的方式 -
反反爬
但是即使使用了代理ip,对方服务器任然会有很多的方式来检测我们是否是一个爬虫,比如:
1.一段时间内,检测IP访问的频率,访问太多频繁会屏蔽
2.检查Cookie,User-Agent,Referer等header参数,若没有则屏蔽
3.服务方购买所有代理提供商,加入到反爬虫数据库里,若检测是代理则屏蔽
所以更好的方式在使用代理ip的时候使用随机的方式进行选择使用,不要每次都用一个代理ip不能用的删除掉。
8.处理cookie相关的请求
爬虫中使用cookie,为了能够通过爬虫获取到登录后的页面,或者是解决通过cookie的反扒,需要使用request来处理cookie相关的请求
8.1 爬虫中使用cookie的利弊
- 带上cookie的好处,能够访问登录后的页面,能够实现部分反反爬
- 带上cookie的坏处,一套cookie往往对应的是一个用户的信息,请求太频繁有更大的可能性被对方识别为爬虫
8.2 使用requests处理cookie有三种方法:
- cookie字符串放在headers中
- 把cookie字典放传给请求方法的cookies参数接收
- 使用requests提供的session模块
下面就这三种方法简单的讲解下:
8.2.1 cookie添加在heades中
headers中cookie的位置
headers中的cookie:
- 使用分号(;)隔开
- 分号两边的类似a=b形式的表示一条cookie
- a=b中,a表示键(name),b表示值(value)
- 在headers中仅仅使用了cookie的name和value
8.2.2 cookie的具体组成的字段
由于headers中对cookie仅仅使用它的name和value,所以在代码中我们仅仅需要cookie的name和value即可
8.2.3 在headers中使用cookie
复制浏览器中的cookie到代码中使用
headers = {
"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36",
"Cookie":" Pycharm-26c2d973=dbb9b300-2483-478f-9f5a-16ca4580177e; Hm_lvt_98b9d8c2fd6608d564bf2ac2ae642948=1512607763; Pycharm-26c2d974=f645329f-338e-486c-82c2-29e2a0205c74; _xsrf=2|d1a3d8ea|c5b07851cbce048bd5453846445de19d|1522379036"}
requests.get(url,headers=headers)
注意:
cookie有过期时间 ,所以直接复制浏览器中的cookie可能意味着下一程序继续运行的时候需要替换代码中的cookie,对应的我们也可以通过一个程序专门来获取cookie供其他程序使用;当然也有很多网站的cookie过期时间很长,这种情况下,直接复制cookie来使用更加简单
8.3 使用cookies参数接收字典形式的cookie
cookies的形式:字典
cookies = {"cookie的name":"cookie的value"}
使用方法:
requests.get(url,headers=headers,cookies=cookie_dict}
8.4 使用requests.session处理cookie
requests 提供了一个叫做session类,来实现客户端和服务端的会话保持
会话保持有两个作用:
- 保存cookie,下一次请求会带上前一次的cookie
- 实现和服务端的长连接,加快请求速度
使用方法
session = requests.session()
response = session.get(url,headers)
session实例在请求了一个网站后,对方服务器设置在本地的cookie会保存在session中,下一次再使用session请求对方服务器的时候,会带上前一次的cookie
9.requests中cookirJar的处理方法
使用request获取的resposne对象,具有cookies属性,能够获取对方服务器设置在本地的cookie,但是如何使用这些cookie呢?
9.1 方法介绍
response.cookies是CookieJar类型
使用requests.utils.dict_from_cookiejar,能够实现把cookiejar对象转化为字典
9.2 方法展示
import requests
url = "http://www.baidu.com"
#发送请求,获取resposne
response = requests.get(url)
print(type(response.cookies))
#使用方法从cookiejar中提取数据
cookies = requests.utils.dict_from_cookiejar(response.cookies)
print(cookies)
输出为:
<class 'requests.cookies.RequestsCookieJar'>
{'BDORZ': '27315'}
注意:
在前面的requests的session类中,我们不需要处理cookie的任何细节,如果有需要,我们可以使用上述方法来解决
10.timeout超时参数的使用
在平时网上冲浪的过程中,我们经常会遇到网络波动,这个时候,一个请求等了很久可能任然没有结果。在爬虫中,一个请求很久没有结果,就会让整个项目的效率变得非常低,这个时候我们就需要对请求进行强制要求,让他必须在特定的时间内返回结果,否则就报错
9.1 超时参数使用方法如下:
response = requests.get(url,timeout=3)
通过添加timeout参数,能够保证在3秒钟内返回响应,否则会报错
注意:
这个方法还能够拿来检测代理ip的质量,如果一个代理ip在很长时间没有响应,那么添加超时之后也会报错,对应的这个ip就可以从代理ip池中删除
10.retrying模块的使用
使用超时参数能够加快我们整体的请求速度,但是在正常的网页浏览过成功,如果发生速度很慢的情况,我们会做的选择是刷新页面,那么在代码中,我们是否也可以刷新请求呢?对应的,retrying模块就可以帮助我们解决
10.1 retrying模块的使用
retrying模块的地址:https://pypi.org/project/retrying/
retrying 模块的使用
- 使用retrying模块提供的retry模块
- 通过装饰器的方式使用,让被装饰的函数反复执行
- retry中可以传入参数stop_max_attempt_number,让函数报错后继续重新执行,达到最大执行次数的上限,如果每次都报错,整个函数报错,如果中间有一个成功,程序继续往后执行
10.2 retrying和requests的简单封装
实现一个发送请求的函数,每次爬虫中直接调用该函数即可实现发送请求,在其中
- 使用timeout实现超时报错
- 使用retrying模块实现重试
代码参考:
# parse.py
import requests
from retrying import retry
headers = {}
#最大重试3次,3次全部报错,才会报错
@retry(stop_max_attempt_number=3)
def _parse_url(url)
#超时的时候回报错并重试
response = requests.get(url, headers=headers, timeout=3)
#状态码不是200,也会报错并重试
assert response.status_code == 200
return response
def parse_url(url)
try: #进行异常捕获
response = _parse_url(url)
except Exception as e:
print(e)
#报错返回None
response = None
return response
retrying模块能够实现捕获函数的异常,反复执行函数的效果,和timeout配合使用,能够解决网络波动带来的请求不成功的问题