微信 AI 机器人全系列方案!

微信机器人可 自动收发消息、管理社群和好友,大幅提升运营效率,尤其适合处理重复性任务(如客服问答、活动通知)。通过集成 AI 能力(如 GPT),还能实现 智能对话、多语言翻译 等高级功能,节省人力成本并支持 24 小时服务,是电商、教育等领域的高效工具。

本文档主要介绍一下微信机器人的基本所有各种实现方式和案例。

自动欢迎、每日新闻、关键词回复、聊天等等


实现方式类型


案例解析与风险说明

  1. Hook 技术(WeChatFerry)风险点:直接读写微信内存,易触发内存保护检测,根据情况,目前还好,反而 web 协议较危险; • 案例建议:仅用于技术研究,使用虚拟机隔离测试环境。
  2. 协议模拟(GeweChat)风险点:异地 IP 或高频操作(如每秒 1 条消息)易封号; • 存活条件:部署时需选择与账号归属地同省的服务器。
  3. RPA 方案(影刀 RPA)优势:模拟真人点击,每日发送 50 条以下消息几乎无风险; • 缺陷:无法实现消息实时监听(需轮询窗口)。
  4. 企业微信 API合规性:需企业资质认证,功能限制严格(如不可主动添加好友); • 适用性:仅限员工内部通知或客户服务,企业微信需对方已绑定企业。

选型指南

  1. 重视安全性:优先选择 RPA企业微信 API,牺牲功能换稳定;
  2. 功能深度需求:可承受风险时选择 协议模拟(如 GeweChat)或 开源框架(AstrBot);
  3. 技术研究用途:使用 Hook 技术(WeChatFerry)但严格隔离测试环境;
  4. 商业化运营:避免使用个人微信方案,转向企业微信或自研合规接口。

风险规避原则

  • 账号隔离:尽量使用小号,避免主号被封;
  • 行为模拟:消息间隔 ≥5 秒,日发送量 ≤200 条,更严格的建议(3 条/1 分钟),穿插随机操作(如点赞、转账);
  • 环境伪装:服务器 IP 与账号归属地同省,使用真实设备指纹(如安卓机改机工具);
  • 法律合规:避免处理敏感数据(如支付信息),遵守《个人信息保护法》。

案例框架


1. WeChatFerry( 5.9k)

实现原理: • Hook 技术:通过注入 DLL 劫持微信进程内存,拦截消息处理函数(如接收、发送),使用 NanoRPC 通信协议转发数据。 • 版本绑定:需严格匹配微信客户端版本(如 v3.9.12.17),更新后需重新逆向适配。

风险: • 极高封号率(>80%),直接侵入微信进程易被检测。 • 🔧 技术门槛高:需逆向分析内存结构,维护成本极高。

更新:是

语言:综合

操作指引

  1. 安装指定版本微信(如 3.9.12.17)。
  2. 下载 WeChatFerry 并注入 DLL(需管理员权限)。
  3. 通过 Python 示例代码监听消息

仓库地址

PS:容易掉线


2. ItChat(目前不支持)(26k)

实现原理: • Web 协议模拟:通过 HTTP 请求模拟微信网页版登录与消息交互,伪造 UOS 协议头绕过登录限制。

风险: • 中高风险:新号无法登录,接口易失效。 • 🔄 功能受限:仅支持文本/图片收发。

更新:否

语言:python

操作指引

  1. 安装 Python 库:pip install itchat
  2. 编写基础机器人

仓库地址: • GitHub: https://github.com/littlecodersh/ItChat


3. GeweChat( 2.8k)

实现原理: • iPad 协议模拟:逆向微信 iPad 客户端协议,通过 Docker 部署提供 API 服务,支持扫码登录。

风险: • 中等风险:需同省 IP 部署,消息频率 ≤5 条/分钟。

更新:是

语言:java

操作指引

  1. 安装 Docker:sudo apt-get install docker.io
  2. 拉取镜像运行容器:
  docker pull registry.cn-hangzhou.aliyuncs.com/gewe/gewe:latest
  1. 调用 API 发送消息(Python 示例):
 import requests  
res = requests.post("http://localhost:2531/send", json={

    "to": "好友微信ID",

    "content": "Hello GeweChat"  
})  

仓库地址: • GitHub: https://github.com/Devo919/Gewechat/


4. Wechaty( 21.3k)

官网:https://wechaty.js.org/blog/

实现原理: • 多协议抽象层(Puppet):支持 Web/iPad/Mac 协议,需付费 Token(如 padlocal)使用稳定协议。

风险: • 中高风险:Web 协议易失效,付费协议成本高(≈$50/月)。

更新:3 月前

语言:TypeScript

操作指引

  1. 安装 Node.js 包:npm install wechaty
  2. 编写机器人(TypeScript)

仓库地址

仓库:https://github.com/danni-cool/wechatbot-webhook

  • 智能微秘书,基于 wechaty,有些功能付费(2.1k)

仓库:https://github.com/leochen-g/wechat-assistant-pro


5. AstrBot( 7k)

官网:https://astrbot.app/

实现原理: • 协议 + AI 集成:基于 GeweChat 协议,集成 GPT/Gemini 模型,支持知识库和插件扩展。

风险: • 中等风险:与 GeweChat 相同协议风险,需过滤 AI 生成内容。

更新:是

语言:python

操作指引

  1. 部署 Docker 容器
  2. 访问 Web 面板配置 AI 行为。 仓库地址: • GitHub: https://github.com/AstrBotDevs/AstrBot

6. Dify-On-WeChat(2.2k)(上游 36.1k)

实现原理: • AI 工作流引擎:基于 GeweChat 协议,集成 Dify 平台实现多模型对话和知识库检索。

风险: • 中等风险:需控制 AI 生成内容合规性,避免敏感词。

更新:是

语言:python

操作指引

  1. 克隆仓库并安装依赖:
 git clone https://github.com/hanfangyuan4396/dify-on-wechat
cd dify-on-wechat && pip install -r requirements.txt  
  1. 配置 config.yml 并启动:
 python main.py  

仓库地址

https://github.com/JC0v0/Coze-on-Wechat

PS:容易封号


7. WxAuto( 4.4k)

实现原理: • UI 自动化:通过 Windows API 识别微信控件(输入框、发送按钮),模拟点击操作。

风险: • 低风险:操作间隔 ≥5 秒时封号率低,但无法实时监听消息。

更新:是

语言:python

操作指引

  1. 安装 Python 库:pip install wxauto
  2. 自动发送消息示例:
 from wxauto import WeChat  
wx = WeChat()  
wx.send("你好", "文件传输助手")  

仓库地址

https://github.com/KouriChat/KouriChat


8. 影刀 RPA

官网:https://www.yingdao.com/

实现原理: • 商业 RPA 工具:图形化编程模拟用户点击、输入,支持 OCR 识别和图像匹配。

风险: • 低风险:符合真人操作逻辑,需购买商业授权(≈¥299/月)。

 

9. kirara-ai(多平台)(14.9k)

https://github.com/lss233/kirara-ai

支持多种聊天平台(暂时没有个人微信)。


最后

最近 web 协议被大量封号,hook 方式反而好一些,具体大家自行试用,目前我用的也是wcf进行二次操作~

希望可以帮助大家闭坑,用 AI 给自己赋能,避免频繁和其他违规操作,否则容易封号~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值