微信机器人可 自动收发消息、管理社群和好友,大幅提升运营效率,尤其适合处理重复性任务(如客服问答、活动通知)。通过集成 AI 能力(如 GPT),还能实现 智能对话、多语言翻译 等高级功能,节省人力成本并支持 24 小时服务,是电商、教育等领域的高效工具。
本文档主要介绍一下微信机器人的基本所有各种实现方式和案例。
自动欢迎、每日新闻、关键词回复、聊天等等
实现方式类型
案例解析与风险说明
- Hook 技术(WeChatFerry) • 风险点:直接读写微信内存,易触发内存保护检测,根据情况,目前还好,反而 web 协议较危险; • 案例建议:仅用于技术研究,使用虚拟机隔离测试环境。
- 协议模拟(GeweChat) • 风险点:异地 IP 或高频操作(如每秒 1 条消息)易封号; • 存活条件:部署时需选择与账号归属地同省的服务器。
- RPA 方案(影刀 RPA) • 优势:模拟真人点击,每日发送 50 条以下消息几乎无风险; • 缺陷:无法实现消息实时监听(需轮询窗口)。
- 企业微信 API • 合规性:需企业资质认证,功能限制严格(如不可主动添加好友); • 适用性:仅限员工内部通知或客户服务,企业微信需对方已绑定企业。
选型指南
- 重视安全性:优先选择 RPA 或 企业微信 API,牺牲功能换稳定;
- 功能深度需求:可承受风险时选择 协议模拟(如 GeweChat)或 开源框架(AstrBot);
- 技术研究用途:使用 Hook 技术(WeChatFerry)但严格隔离测试环境;
- 商业化运营:避免使用个人微信方案,转向企业微信或自研合规接口。
风险规避原则
- 账号隔离:尽量使用小号,避免主号被封;
- 行为模拟:消息间隔 ≥5 秒,日发送量 ≤200 条,更严格的建议(3 条/1 分钟),穿插随机操作(如点赞、转账);
- 环境伪装:服务器 IP 与账号归属地同省,使用真实设备指纹(如安卓机改机工具);
- 法律合规:避免处理敏感数据(如支付信息),遵守《个人信息保护法》。
案例框架
1. WeChatFerry( 5.9k)
实现原理: • Hook 技术:通过注入 DLL 劫持微信进程内存,拦截消息处理函数(如接收、发送),使用 NanoRPC 通信协议转发数据。 • 版本绑定:需严格匹配微信客户端版本(如 v3.9.12.17),更新后需重新逆向适配。
风险: • 极高封号率(>80%),直接侵入微信进程易被检测。 • 🔧 技术门槛高:需逆向分析内存结构,维护成本极高。
更新:是
语言:综合
操作指引:
- 安装指定版本微信(如 3.9.12.17)。
- 下载 WeChatFerry 并注入 DLL(需管理员权限)。
- 通过 Python 示例代码监听消息
仓库地址:
- GitHub: https://github.com/lich0821/WeChatFerry
- NGCBot( 3.1k) : https://github.com/ngc660sec/NGCBot
PS:容易掉线
2. ItChat(目前不支持)(26k)
实现原理: • Web 协议模拟:通过 HTTP 请求模拟微信网页版登录与消息交互,伪造 UOS 协议头绕过登录限制。
风险: • 中高风险:新号无法登录,接口易失效。 • 🔄 功能受限:仅支持文本/图片收发。
更新:否
语言:python
操作指引:
- 安装 Python 库:pip install itchat
- 编写基础机器人
仓库地址: • GitHub: https://github.com/littlecodersh/ItChat
3. GeweChat( 2.8k)
实现原理: • iPad 协议模拟:逆向微信 iPad 客户端协议,通过 Docker 部署提供 API 服务,支持扫码登录。
风险: • 中等风险:需同省 IP 部署,消息频率 ≤5 条/分钟。
更新:是
语言:java
操作指引:
- 安装 Docker:sudo apt-get install docker.io
- 拉取镜像运行容器:
docker pull registry.cn-hangzhou.aliyuncs.com/gewe/gewe:latest
- 调用 API 发送消息(Python 示例):
import requests
res = requests.post("http://localhost:2531/send", json={
"to": "好友微信ID",
"content": "Hello GeweChat"
})
仓库地址: • GitHub: https://github.com/Devo919/Gewechat/
4. Wechaty( 21.3k)
官网:https://wechaty.js.org/blog/
实现原理: • 多协议抽象层(Puppet):支持 Web/iPad/Mac 协议,需付费 Token(如 padlocal)使用稳定协议。
风险: • 中高风险:Web 协议易失效,付费协议成本高(≈$50/月)。
更新:3 月前
语言:TypeScript
操作指引:
- 安装 Node.js 包:npm install wechaty
- 编写机器人(TypeScript)
仓库地址:
- GitHub: https://github.com/wechaty/wechaty
- wechatbot-webhook 基于 wechaty,使用 web api(1.9k)
仓库:https://github.com/danni-cool/wechatbot-webhook
- 智能微秘书,基于 wechaty,有些功能付费(2.1k)
仓库:https://github.com/leochen-g/wechat-assistant-pro
5. AstrBot( 7k)
实现原理: • 协议 + AI 集成:基于 GeweChat 协议,集成 GPT/Gemini 模型,支持知识库和插件扩展。
风险: • 中等风险:与 GeweChat 相同协议风险,需过滤 AI 生成内容。
更新:是
语言:python
操作指引:
- 部署 Docker 容器
- 访问 Web 面板配置 AI 行为。 仓库地址: • GitHub: https://github.com/AstrBotDevs/AstrBot
6. Dify-On-WeChat(2.2k)(上游 36.1k)
实现原理: • AI 工作流引擎:基于 GeweChat 协议,集成 Dify 平台实现多模型对话和知识库检索。
风险: • 中等风险:需控制 AI 生成内容合规性,避免敏感词。
更新:是
语言:python
操作指引:
- 克隆仓库并安装依赖:
git clone https://github.com/hanfangyuan4396/dify-on-wechat
cd dify-on-wechat && pip install -r requirements.txt
- 配置 config.yml 并启动:
python main.py
仓库地址:
- GitHub: https://github.com/hanfangyuan4396/dify-on-wechat
- 上游 cow: https://github.com/zhayujie/chatgpt-on-wechat
- coze-on-wechat 基于 chatgpt-on-wechat 和 dify-on-wechat 二次开发,主要是对接 Coze 平台
https://github.com/JC0v0/Coze-on-Wechat
PS:容易封号
7. WxAuto( 4.4k)
实现原理: • UI 自动化:通过 Windows API 识别微信控件(输入框、发送按钮),模拟点击操作。
风险: • 低风险:操作间隔 ≥5 秒时封号率低,但无法实时监听消息。
更新:是
语言:python
操作指引:
- 安装 Python 库:pip install wxauto
- 自动发送消息示例:
from wxauto import WeChat
wx = WeChat()
wx.send("你好", "文件传输助手")
仓库地址:
- GitHub: https://github.com/cluic/wxauto
- 基于 wxauto,KouriChat 是一个基于人工智能的微信聊天机器人
https://github.com/KouriChat/KouriChat
8. 影刀 RPA
实现原理: • 商业 RPA 工具:图形化编程模拟用户点击、输入,支持 OCR 识别和图像匹配。
风险: • 低风险:符合真人操作逻辑,需购买商业授权(≈¥299/月)。
9. kirara-ai(多平台)(14.9k)
https://github.com/lss233/kirara-ai
支持多种聊天平台(暂时没有个人微信)。
最后
最近 web 协议被大量封号,hook 方式反而好一些,具体大家自行试用,目前我用的也是wcf进行二次操作~
希望可以帮助大家闭坑,用 AI 给自己赋能,避免频繁和其他违规操作,否则容易封号~