【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ ⌈人工智能与大模型应用 ⌋ ⌋ ⌋ 人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。
文章目录
前言
在数字时代的技术革命洪流中,程序开发是构筑智能世界的基石。开发者们以代码为笔,在0与1的二进制宇宙中勾勒未来图景。如今,AI技术蓬勃发展,大语言模型成为产业变革的核心引擎。DeepSeek凭借其出色的自然语言理解能力,在智能交互领域大放异彩。它不仅能精准解析语言背后的深层含义,还能以智能、高效的方式响应需求,为行业创新注入新活力。从智能客服到内容创作,DeepSeek-R1正持续赋能,推动着人机交互迈向更智能、更人性化的新高度。
基于蓝耘元生代智算云强大的分布式算力支持,本文将深入探讨蓝耘MaaS(Model as a Service)平台的特点和优势,分享蓝耘MaaS平台与DeepSeek-R1模型的融合亮点及应用拓展实例,并提供了API工作流调用相关使用技巧和实践体验。
一、DeepSeek-R1模型简介
2025年1月杭州深度求索公司推出的DeepSeek-R1大模型,通过技术创新实现了大模型应用的平民化突破。该模型基于Transformer架构,在保持千亿参数规模的同时,采用独特的轻量化设计:通过精简冗余结构和引入量化压缩技术,将模型存储需求降低80%,计算资源消耗减少60%。其自适应部署系统可根据设备性能(从手机到服务器)自动匹配优化版本,使普通PC和移动设备首次具备运行大模型的能力。
作为多模态推荐系统专用模型,DeepSeek-R1既继承了传统大模型在文本生成、智能问答等NLP任务上的优势,又针对推荐场景进行深度优化。通过两阶段训练机制——先在海量数据上进行无监督预训练获取基础认知,再通过特定任务微调提升专业性能,使其在商品推荐等场景的准确率提升35%。这种技术突破不仅打破了大模型对高端硬件的依赖,更开创了“端侧智能”新纪元,使得个性化推荐服务可直接部署在用户终端,在保障数据隐私的同时实现毫秒级响应。该模型的问世标志着人工智能技术从实验室走向普惠应用的关键转折,为行业树立了高效能AI系统的新标杆。图1展示了AI模型在多项任务中的表现对比。
DeepSeek-R1突破性支持低配置设备运行,无需独立显卡即可部署,仅需充足硬盘空间(如6710亿参数版本需1TB),大幅降低使用门槛。其本地化处理模式保障数据隐私,避免云端传输风险,并支持用户通过自定义知识库进行定向训练,强化特定领域性能。模型兼具灵活性与个性化能力,既能满足通用推荐需求,又可针对垂直场景优化,实现隐私安全与精准服务的平衡,推动大模型技术从实验室向普惠应用加速落地。
二、蓝耘元生代平台简介
蓝耘科技作为行业内的关键力量,自2004年创立以来,成功实现了从传统IT系统集成业务向GPU算力云服务业务的华丽转身。在过往的发展轨迹中,蓝耘科技凭借着对市场趋势的敏锐嗅觉,精准洞察行业发展的每一个细微动向。在算力资源的管理调度、性能优化以及运维运营等核心环节,形成了一套高度成熟且具备可复制性的工程化能力体系。其服务触角广泛延伸,深入高校科研、人工智能、自动驾驶、工业设计等众多前沿领域,为各行业的创新发展提供了坚实的算力支撑。蓝耘元生代平台主页如图2所示。
蓝耘元生代智算平台基于Kubernetes构建,提供高性能GPU集群,支持动态资源调配与分布式计算框架(如PyTorch、TensorFlow、DeepSpeed等),并具备自动化调度和故障恢复能力,可显著提升训练效率。其关键特性包括:灵活资源配置、分布式训练优化、实时监控界面。蓝耘元生代智算云架构如图3所示。
三、蓝耘MaaS平台使用DeepSeek-R1模型
蓝耘MaaS平台,作为模型即服务(Model as a Service)的先行者,以创新的云计算平台模式,将训练有素的AI模型以标准化服务形式呈现给用户。其核心优势在于丰富的预训练模型库,涵盖自然语言处理、计算机视觉、语音识别等多个领域,用户无需从零开始训练模型,大大节省时间和资源。
(一)注册蓝耘智算平台账号
点击注册链接:https://cloud.lanyun.net//#/registerPage?promoterCode=0131
输入手机号获取验证码,输入邮箱(这里邮箱会收到信息,要激活邮箱),设置密码,点击注册。如图4所示。
新用户福利:注册后可领取免费试用时长(20元代金券,可直接当余额来使用)。
若已经注册过帐号,点击下方“已有账号,立即登录”即可。
(二)进入蓝耘MaaS模型广场
登录后进入首页,点击“MaaS平台”,如图5所示。
接着进入MaaS平台的模型广场。在这里,用户可以看到多种来自不同供应商的模型,如DeepSeek、通义等。页面详细列出了模型名称、类型(如文本生成)、上下文长度等信息,还提供了API示例、查看详情和立即体验等操作选项。图6中展示的是蓝耘元生代MaaS平台的模型广场页面。
然后,找到DeepSeek-R1大模型,点击“立即体验”。如图7所示。
图8中展示的是蓝耘元生代MaaS平台的对话界面。左侧是功能导航栏,包含模型广场、文本模型等选项。对话框上方是模型选择区域,点击可展开选择如DeepSeek-R1、QwQ-32B等多种模型。下方是对话输入区,用户可输入问题,有“深度思考”“联网搜索”等功能按钮,输入框显示token限制。这里选择的是“DeepSeek-R1”模型。
(三)使用DeepSeek-R1模型生成文案
在输入框中输入提示词,然后回车,或者用鼠标点击提示词输入框右侧的箭头按钮,向DeepSeek-R1发起提问。DeepSeek-R1给出的回答如图9所示,需要注意的是,大模型属于概率模型,每次生成的回答内容可能不完全相同。提示词如下:
请模仿李白的《望庐山瀑布》做一首诗,题目是《望连云港花果山》
此次对话输出870tokens,总耗时16.4s,共消耗903tokens。该对话token消耗的数量=输入token数+输出token数。
(四)使用DeepSeek-R1模型生成代码
生成有关机器学习分类预测的代码,提示词如下:
帮我生成一段关于机器学习分类预测的代码,要求使用scikit-learn库。
输出结果如图10所示。
此次对话输出1579tokens,总耗时35.0s,共消耗1600tokens。该对话token消耗的数量=输入token数+输出token数。
输出代码如下:
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# 加载数据集(这里使用鸢尾花数据集作为示例)
data = load_iris()
X = data.data # 特征数据
y = data.target # 目标变量
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(
X, y,
test_size=0.3, # 测试集占比30%
random_state=42, # 随机种子保证可重复性
stratify=y # 保持类别分布
)
# 数据标准化(重要对于SVM等基于距离的算法)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 创建分类器(这里使用支持向量机)
classifier = SVC(
kernel='rbf', # 径向基核函数
C=1.0, # 正则化参数
gamma='scale', # 核系数
random_state=42
)
# 训练模型
classifier.fit(X_train_scaled, y_train)
# 预测测试集
y_pred = classifier.predict(X_test_scaled)
# 评估模型性能
print(f"准确率: {accuracy_score(y_test, y_pred):.4f}")
print("\n分类报告:")
print(classification_report(y_test, y_pred))
print("\n混淆矩阵:")
print(confusion_matrix(y_test, y_pred))
# 示例:预测新数据
new_data = [[5.1, 3.5, 1.4, 0.2]] # 新样本特征
new_data_scaled = scaler.transform(new_data)
prediction = classifier.predict(new_data_scaled)
print(f"\n新数据预测类别: {data.target_names[prediction][0]}")
输出示例:
准确率: 0.9778
分类报告:
precision recall f1-score support
0 1.00 1.00 1.00 15
1 1.00 0.93 0.97 15
2 0.94 1.00 0.97 15
accuracy 0.98 45
macro avg 0.98 0.98 0.98 45
weighted avg 0.98 0.98 0.98 45
混淆矩阵:
[[15 0 0]
[ 0 14 1]
[ 0 0 15]]
新数据预测类别: setosa
四、蓝耘平台免费送超千万Token
只需注册蓝耘平台账号,新用户即可轻松获赠1000万Token!如此丰厚的Token免费资源包,具体使用细则详见图11。
关于Token的计算规则,我们为您详细说明:中文方面,1个汉字约计为1.2 Token;英文方面,1个英文单词则约计为1 Token。此外,使用API调用时,会额外消耗5%的系统Token。
以下是我们平台各项操作的Token消耗情况,供您参考:
操作类型 | 内容长度 | 消耗Token | 备注说明 |
---|---|---|---|
文本分类 | 50字中文内容 | 60 Token | 此费用已包含系统开销 |
知识库查询 | 200字问题描述 | 250 Token | 包含向量检索费用 |
智能对话 | 10轮对话交流 | 约800 Token | 对话上下文越长,消耗Token越多 |
五、未来展望
在AI技术迈向普惠化的时代浪潮中,DeepSeek-R1与蓝耘MaaS平台展开深度融合,携手开启智能应用发展的崭新纪元。
DeepSeek-R1凭借端侧部署的创新举措,成功突破硬件条件的重重桎梏,将大模型的强大能力拓展至移动终端领域。它精心构建起一个智能生态系统,在这个系统里,隐私安全与实时响应犹如鸟之双翼、车之两轮,相得益彰,为用户带来全方位的智能体验。蓝耘MaaS平台则依托其弹性算力调度机制以及模型即服务的创新模式,宛如一把利刃,大幅削减了AI应用的准入门槛。中小企业无需再为高昂的技术成本和复杂的部署流程而烦恼,能够轻松便捷地调用千亿参数模型,踏上AI赋能的创新之路。
这两者的协同创新,正有力推动着三大变革的进程:其一,重塑人机交互模式,借助本地化的多模态推荐技术,实现服务的零延迟精准触达,让用户与智能设备的交互更加自然流畅、高效贴心;其二,催生边缘智能新兴业态,在工业质检、智慧医疗等关键领域,培育出一系列低功耗的AI解决方案,为这些行业的智能化升级注入强大动力;其三,加速AI民主化进程,数以百万计的开发者能够借助平台提供的免费资源包,迅速验证自己的创意构想,激发无限的创新活力。
展望未来,随着蓝耘持续优化分布式训练框架,以及DeepSeek不断迭代多模态理解能力,二者有望携手打造出“云端训练-边缘推理”的完整生态链条。这一生态链将如同一条强劲的引擎,为数字经济的蓬勃发展注入源源不断的新动能,引领我们迈向更加智能、高效的未来。
小结
本文系统阐述了DeepSeek-R1大模型的技术突破与蓝耘MaaS平台的协同创新价值。DeepSeek-R1通过轻量化设计与自适应部署系统,突破硬件限制实现端侧智能,其两阶段训练机制在推荐场景中提升35%准确率;蓝耘MaaS平台依托弹性算力调度和丰富的预训练模型库,显著降低AI应用门槛。二者的深度融合催生三大变革:重构人机交互范式、培育边缘智能新业态、加速AI民主化进程。通过实际演示文案生成与机器学习代码开发,验证了平台在创作辅助与算法开发领域的实用性。蓝耘平台提供的千万级免费Token资源,更将助推开发者生态建设,为“云端训练-边缘推理”生态链发展注入新动能。
欢迎 点赞👍 | 收藏⭐ | 评论✍ | 关注🤗