pandas案例(一)

案例:对于这一组电影数据,如果我们想runtime的分布情况,应该如何呈现数据?
import pandas as pd
from matplotlib import pyplot as plt
#pandas读取外部数据
df = pd.read_csv("D:/test/youtube_video_data/IMDB-Movie-Data.csv")
print(df.head())

在这里插入图片描述

print(df.info())

在这里插入图片描述

#获取时间列数据
runtime_data = df["Runtime (Minutes)"].values
#print(runtime_data)
max_runtime = runtime_data.max()
min_runtime = runtime_data.min()
print(max_runtime,min_runtime)
d = 5
#计算组数
num_bin = (max_runtime - min_runtime) // 5
#设置图像大小
plt.figure(figsize=(20,8),dpi=80)
plt.hist(runtime_data,num_bin)  #直方图
#设置x轴的刻度
plt.xticks(range(min_runtime,max_runtime+5,5))
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值