快速排序
快速排序简单介绍
快速排序:QuickSort 是对冒泡排序的一种改进。
基本思想
通过一趟排序将要排序的数据分割成两个独立的部分,其中一部分的所有数据都比另外一部分的所有数据都要小,【可以在这思考一下怎么做- ,或许已经知道怎么做了,等下就验证一下是否是自己想的一样】,然后在按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据有序。
图解分析快速排序的思想
我们对于分析的步骤进行拆解
中心思想:从左右两边同时进行检索处理,若左右两边存在位于中轴值两侧的数据,进行交换,否则维持原来位置
1.第一步,我们通过原始数组获取一个分组的位置下标和对应的值,将原始数组分为两部分,如上图所示,我们对应的下标Index = (left+right)/ 2【left表示为数组的初始左下标,right表示右下标】对应上边例子的index=2,对应的数据为9,我们建立两个指针,一个从左遍历向9逼近,一个从右向9开始逼近,我们将比9小的放在左边部分,比9大的放在右边部分。我们得到一个第二层的这样的数组。
- 我们对于分成两部分的数组是不能确保其有序性,我们将对应的两部分在进行如1的操作处理【已经分组的左右两部分不可同时处理】,最终将对应的分组依次从左至右联立起来就得到了我们最终的结果。
代码实现
这个因为递归处理,我们就不用一步一步的进行拆解,我们在中间打印一下验证是否如分析结果
/**
*
* @param arr 代操作的数组
* @param left 数组的左下标
* @param right 数组的右下标
*/
public static void quickSort(int[] arr,int left,int right){
int l =left;
int r = right;
// 表示对应的中轴数
int pivot = arr[(left+right)/2];
// 临时变量用于操作交换的数
int temp = 0;
while(l < r){
//在中轴值的左边一直找
while(arr[l]<pivot){//在中轴值的左边找,直到找到>=pivot值,就退出
l+=1;
}
while(arr[r]>pivot){//从右开始
r-=1;
}
//如果l>=r 说明pivot的左右两边的值
if(l>=r){
break;
}
temp =arr[l];
arr[l]=arr[r];
arr[r]=temp;
//如果交换完之后,发现arr[l]==pivot 值相等,r--, --前移,想象一下如果中间有多个相同的值,不然会遗漏重复数据
if(arr[l]==pivot){
r--;
}
//如果交换完之后,发现arr[r]==pivot 值相等,l++, 后移
if(arr[r]==pivot){
l++;
}
}
//可以在这试着打印看下我们第一次的分组是否符合预期,不进行递归的时候验证一下
System.out.println(“看下每次的分组”+Arrays.toString(arr));
//如果左右下标指向同一个位置,我们要错位处理
if(l==r){
l+=1;
r-=1;
}
// 左递归,我们需要最后分组的最前端的,这个可以对理解一下
if(left<r){
quickSort(arr,left,r);
}
if(right>l){
quickSort(arr,l,right);
}
}
测试代码(可直接copy使用验证)
public class QuickSort {
public static void main(String[] args) {
int[] arr = {12,4,9,112,-6,5};
quickSort(arr,0,arr.length-1);
System.out.println("arr快排的结果为"+ Arrays.toString(arr));
}
/**
*
* @param arr 代操作的数组
* @param left 数组的左下标
* @param right 数组的右下标
*/
public static void quickSort(int[] arr,int left,int right){
int l =left;
int r = right;
// 表示对应的中轴数
int pivot = arr[(left+right)/2];
// 临时变量用于操作交换的数
int temp = 0;
while(l < r){
//在中轴值的左边一直找
while(arr[l]<pivot){
l+=1;
}
while(arr[r]>pivot){
r-=1;
}
//如果l>=r 说明pivot的左右两边的值
if(l>=r){
break;
}
temp =arr[l];
arr[l]=arr[r];
arr[r]=temp;
//如果交换完之后,发现arr[l]==pivot 值相等,r--, --前移
if(arr[l]==pivot){
r--;
}
//如果交换完之后,发现arr[r]==pivot 值相等,l++, 后移
if(arr[r]==pivot){
l++;
}
}
//如果左右下标指向同一个位置,我们要错位处理
if(l==r){
l+=1;
r-=1;
}
// 左递归,我们需要最后分组的最前端的
if(left<r){
quickSort(arr,left,r);
}
if(right>l){
quickSort(arr,l,right);
}
}
}
结果
效率测试
同样我们拿8W个随机数据进行排序测试
测试代码如下
public static void main(String[] args) {
int[] arr = new int[80000];
for (int i = 0; i < arr.length; i++) {
arr[i]=(int)(Math.random()*800000);
}
System.out.println("快速排序~~");
Date dateStart = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
System.out.println("Front of Execute:"+simpleDateFormat.format(dateStart));
quickSort(arr,0,arr.length-1);
Date dateEnd = new Date();
System.out.println("Front of Execute:"+simpleDateFormat.format(dateEnd));
}
8W 个数据感知不够,顺便测试一下80W个数据的效率
效率应该是感知不到的。相较于其他算法超过1S的处理,快速排序的优势显而易见咯。