1 插入排序
1.1 直接插入排序
基本原理:
将第n个数插入已经排序好的,长度为n-1的序列中。从n-1长度的序列中查找出待插入的元素应该插入的位置;给插入元素腾出空间。
操作方法:
从第2个数开始遍历到第n个数。插入第i个数时,先与第i-1个数进行比较。因为前i-1个数已经为有序序列,如果i-1号数数值小于第i号数,则仍然有序,无需操作。否则,先将第i号数暂存于A[0]出。然后从第i-1号位开始,从后往前进行比较,如果A[j]>A[0],则A[j]后移一位。当A[j]<=A[0]时,将A[0]中暂存的数值插入第j+1号位。
void InsertSort(int A[], int n)
{
int i,j;
for(i=2;i<=n;i++)
if(A[i]<A[i-1]){
A[0]=A[i];
for(j=i-1;A[j]>A[0];j--) A[j+1]=A[j];
A[j+1]=A[0];
}
}
1.2 折半插入排序
基本原理:
将第n个数插入已经排序好的,长度为n-1的序列中。使用折半查找的方法找出待插入的位置,然后移动插入元素之后的元素。
操作方法:
与直接插入排序法类似,将第二层for循环中逐个元素进行比较的操作更改为折半查找。
void InsertSort2(int A[],int n)
{
int i,j,low,mid,high;
for(i=2;i<=n;i++){
low=1;high=i-1;
A[0]=A[i];
while(low<=high){
mid = (low+high)/2;
if(A[0]<A[mid]) low=mid+1;
else high=mid-1;
}
for(j=i-1;j>=high+1;j--) A[j+1]=A[j];
A[high+1] =A[0