n*m的格子中正方形个数和长方形个数

问题描述
1.设有一个nm方格的棋盘(1≤m,n≤100)。
求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。
例如:当n=2,m=3时
正方形的个数有8个;即边长为1的正方形有6个;
边长为2的正方形有2个。
长方形的个数有10个;
即2
1的长方形有4个;
12的长方形有3个;
3
1的长方形有2个;
3*2的长方形有1个。
程序要求:输入:n和m 输出:正方形的个数与长方形的个数
输入格式
一行两个数N,M
输出格式
一行两个数,分别为正方形个数和长方形个数。
样例输入
2 3
样例输出
8 10
数据规模和约定
1≤m,n≤100

import java.util.*;
//x=min(m,n)-1 
//长方形里面数正方形的个数计算公式:m*n+(m-1)*(n-1)+.....+(m-x)*(n-x) 
// m*n表示长度为1的正方形的个数,(m-1)*(n-1)表示长度为2的正方形的个数。。。。。。
//长方形里面数长方形的个数计算公式(包含正方形):(1+2+3+...+m)*(1+2+3+...+n)=n*m(n+1)*(m+1)/4
 
public class Main3 {
	public static int N, M;
 
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc = new Scanner(System.in);
		N = sc.nextInt();
		M = sc.nextInt();
		int sumz = 0;
		int sumc = 0;
		if (N > M) {
			for (int i = M - 1; i >= 0; i--) {
				sumz += (N - i) * (M - i);
			}
		} else {
			for (int i = N - 1; i >= 0; i--) {
				sumz += (N - i) * (M - i);
			}
		}
		// 长方形个数
		sumc = N * M * (N + 1) * (M + 1) / 4 - sumz;
		System.out.println(sumz + " " + sumc);
 
	}
 
}


  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 对于一个 n×m 的棋盘,其包含正方形数量为: 1×1 的正方形数量为 (n×m) 个; 2×2 的正方形数量为 (n-1)×(m-1) 个; 3×3 的正方形数量为 (n-2)×(m-2) 个; ... k×k 的正方形数量为 (n-k+1)×(m-k+1) 个。 因此,n×m 的棋盘包含正方形数量为: (n×m) + ((n-1)×(m-1)) + ((n-2)×(m-2)) + ... + (1×1) 对于长方形,我们可以枚举其左上角和右下角的位置,即共有 (n-1)×(m-1) 种可能性。因此,n×m 的棋盘包含长方形数量为: (n-1)×(m-1) 注意,这里不正方形。 ### 回答2: 正方形: 对于 n×m 的棋盘,其最短边长为 1,最长边长为 min(n,m),所以包含正方形个数为: 1² + 2² + 3² + ... + min(n,m)² 可以用数学公式简化上述求和式: 1² + 2² + 3² + ... + n² = n(n+1)(2n+1)/6 所以包含正方形个数为: min(n,m)(min(n,m)+1)(2min(n,m)+1)/6 长方形: 首先考虑宽和高都不相同的长方形。对于宽为 i,高为 j 的长方形,其可以从棋盘的任意 i 个竖行和任意 j 个横行组成,所以包含长方形个数为: (n-i+1) × (m-j+1) 将宽和高交换,结果一样,所以计算出所有宽高不同的长方形个数,再减去正方形个数,就是所有长方形个数。 接下来考虑宽和高相同的长方形,其宽高可以为 1,2,3,...,min(n,m)。对于宽高为 i 的正方形,其可以从棋盘的任意 i 个竖行和任意 i 个横行组成,所以包含长方形个数为: (n-i+1) × (m-i+1) 将所有同宽高不同的长方形数加起来,再加上同宽高的正方形数,就是所有长方形个数。 综上所述,棋盘包含长方形个数为: 所有宽高不同的长方形个数 - 所有正方形个数 + 所有宽高相同的长方形个数 = ∑[(n-i+1) × (m-j+1)] - ∑[min(n,m)²] + ∑[(n-i+1) × (m-i+1)] ### 回答3: 对于一个n x m的棋盘,我们可以将其分解为一个个小正方形。在这些小正方形,我们可以找到不同形状的正方形长方形。 先考虑正方形的数量。对于一个n x m的棋盘,我们可以在里面找到不同大小的正方形。例如:当n=1或m=1时,无法构成任何大小的正方形;当n=2或m=2时,只能构成1个2x2的正方形;当n=m=3时,可以构成4个1x1的正方形、1个2x2的正方形和1个3x3的正方形;当n=m=4时,可以构成9个1x1的正方形、4个2x2的正方形和1个3x3的正方形;以此类推。 由此可得,n x m的棋盘正方形的数量为: 1² + 2² + 3² + … + min(n, m)² 这是因为当n > m时,最大的正方形边长为m,所以计算到m;当n <= m时,最大的正方形边长为n,所以计算到n。 接下来考虑长方形的数量。我们可以从n x m的棋盘选择两行和两列,构成一个长方形。由于有n行和m列,因此可以选择的行有n*(n-1)/2种,选择的列有m*(m-1)/2种。所以总共可以构成的长方形数量为: n*(n-1)/2 * m*(m-1)/2 但我们要排除掉正方形的情况。正方形可以由两行和两列组成,所以排除掉的数量为: 1² + 2² + 3² + … + min(n, m)² 因此,n x m的棋盘长方形的数量为: n*(n-1)/2 * m*(m-1)/2 - (1² + 2² + 3² + … + min(n, m)²) 综上所述,n x m的棋盘正方形的数量为1² + 2² + 3² + … + min(n, m)²,长方形的数量为n*(n-1)/2 * m*(m-1)/2 - (1² + 2² + 3² + … + min(n, m)²)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值