数据结构与算法(Python版)二十八:找零兑换问题的动态规划解法

找零兑换:动态规划解法

中间结果记录可以很好解决找零兑换问题

实际上, 这种方法还不能称为动态规划,而是叫做“memoization(记忆化/函数值缓存) ”的技术提高了递归解法的性能

动态规划算法采用了一种更有条理的方式来得到问题的解

找零兑换的动态规划算法从最简单的“1分钱找零”的最优解开始, 逐步递加上去, 直到我们需要的找零钱数

在找零递加的过程中, 设法保持每一分钱的递加都是最优解, 一直加到求解找零钱数, 自然得到最优解

递加的过程能保持最优解的关键是, 其依赖于更少钱数最优解的简单计算, 而更少钱数的最优解已经得到了。

问题的最优解包含了更小规模子问题的最优解, 这是一个最优化问题能够用动态规划策略解决的必要条件。

originalamount找零兑换问题具体来说就是:
在这里插入图片描述

找零兑换:动态规划算法

采用动态规划来解决11分钱的兑换问题

从1分钱兑换开始,逐步建立一个兑换表
在这里插入图片描述

计算11分钱的兑换法, 我们做如下几步:

  1. 首先减去1分硬币,剩下10分钱查表最优解是1
  2. 然后减去5分硬币,剩下6分钱查表最优解是2
  3. 最后减去10分硬币,剩下1分钱查表最优解是1

通过上述最小值得到最优解: 2个硬币

在这里插入图片描述

找零兑换:动态规划算法代码

def dpMakeChange(coinValueList, change, minCoins):
    # 从1分开始到change逐个计算最好硬币数
    for cents in range(1, change+1):
        # 1. 初始化一个最大值
        coinCount = cents
        # 2. 减去每个硬币,向后查最
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值