一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)

数据仓库 专栏收录该内容
22 篇文章 260 订阅

目录

写在前面

一、为什么要进行数据仓库建模?

二、四种常见模型

2.1 维度模型

2.1.1 星型模型

2.1.2 雪花模型

2.1.3 星座模型

2.2 范式模型

2.3 Data Vault模型

2.4 Anchor模型

三 数据模型的评价标准

小编有话


写在前面

大数据时代,维度建模已成为各大厂的主流方式。

维度建模从分析决策的需求出发构建模型,为分析需求服务。重点关注用户如何快速的完成数据分析,可以直观的反应业务模型中的业务问题,需要大量的数据预处理、数据冗余,有较好的大规模复杂查询的响应性能。

系列文章详见「数仓系列文章- 传送门

一、为什么要进行数据仓库建模?

  • 性能:良好的模型能帮我们快速查询需要的数据,减少数据的IO吞吐
  • 成本:减少数据冗余、计算结果复用、从而降低存储和计算成本
  • 效率:改善用户使用数据的体验,提高使用数据的效率
  • 改善统计口径的不一致性,减少数据计算错误的可能性

二、四种常见模型

2.1 维度模型

维度建模按数据组织类型划分可分为星型模型、雪花模型、星座模型。

Kimball老爷爷维度建模四个步骤:

选择业务处理过程 > 定义粒度 > 选择维度 > 确定事实

2.1.1 星型模型

星型模型主要是维表和事实表,以事实表为中心,所有维度直接关联在事实表上,呈星型分布。

2.1.2 雪花模型

雪花模型,在星型模型的基础上,维度表上又关联了其他维度表。这种模型维护成本高,性能方面也较差,所以一般不建议使用。尤其是基于hadoop体系构建数仓,减少join就是减少shuffle,性能差距会很大。

星型模型可以理解为,一个事实表关联多个维度表,雪花模型可以理解为一个事实表关联多个维度表,维度表再关联维度表。

2.1.3 星座模型

星座模型,是对星型模型的扩展延伸,多张事实表共享维度表。

星座模型是很多数据仓库的常态,因为很多数据仓库都是多个事实表的。所以星座模型只反映是否有多个事实表,他们之间是否共享一些维度表。

2.2 范式模型

即实体关系(ER)模型,数据仓库之父Immon提出的,从全企业的高度设计一个3NF模型,用实体加关系描述的数据模型描述企业业务架构,在范式理论上符合3NF。此建模方法,对建模人员的能力要求非常高。

特点:设计思路自上而下,适合上游基础数据存储,同一份数据只存储一份,没有数据冗余,方便解耦,易维护,缺点是开发周期一般比较长,维护成本高。

详见:一篇文章搞懂数据仓库:三范式与反范式_不吃西红柿-CSDN博客_数据仓库三范式

2.3 Data Vault模型

DataVault由Hub(关键核心业务实体)、Link(关系)、Satellite(实体属性) 三部分组成 ,是Dan Linstedt发起创建的一种模型方法论,它是在ER关系模型上的衍生,同时设计的出发点也是为了实现数据的整合,并非为数据决策分析直接使用。

2.4 Anchor模型

高度可扩展的模型,所有的扩展只是添加而不是修改,因此它将模型规范到6NF,基本变成了K-V结构模型。企业很少使用。

三 数据模型的评价标准

数据模型建设的怎么样,极度依赖规范设计,如果代码风格是千人千面,那么恐怕半年下来,业务系统就没法看了。没有什么比数据系统更看重法制,规范体系不仅能保障数据建设的一致性,也能够应对业务交接的情况,更能够为自动化奠定基础。

  1. 业务过程清晰:ODS就是原始信息,不修改;DWD面向基础业务过程;DIM描述维度信息;DWS针对最小场景做指标计算;ADS也要分层,面向跨域的建设,和面向应用的建设;
  2. 指标可理解:按照一定业务事务过程进行业务划分,明细层粒度明确、历史数据可获取,汇总层维度和指标同名同义,能客观反映业务不同角度下的量化程度;
  3. 核心模型相对稳定:如果业务过程运行的比较久,过程相对固定,就要尽快下沉到公共层,形成可复用的核心模型;
  4. 高内聚低耦合:各主题内数据模型要业务高内聚,避免在一个模型耦合其他业务的指标,造成该模型主题不清晰和性价比低。

小编有话

  • 在传统企业数仓中,业务相对稳定,以范式建模为主。 如电信、金融行业等
  • 在互联网公司,业务变化快,需求来来回回的改,计算和存储也不是问题,我们更关心快速便捷的响应业务需求,所以以维度建模为主流。

数仓系列传送门:https://blog.csdn.net/weixin_39032019/category_8871528.html

©️2022 CSDN 皮肤主题:Age of Ai 设计师:meimeiellie 返回首页

打赏作者

不吃西红柿丶

感谢鼓励,我必持续稳定输出!!

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值