卷积神经网络padding为SAME和VALID的区别
“VALID”:不填充
“SAME”:首先尝试两边均匀填充(如果没法平分,就将平分之后剩余的填充在右边或下面)【还有一个含义就是卷积计算之后shape不改变】
例如:
如果:
Input width = 13, Filter width = 6, Stride = 5
则:
当padding="VALID"时:(12和13直接丢弃)
inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13)
|________________| dropped
|_______________|
当padding="SAME"时:(经过计算,需要填充3个0,首先左右两边分别填充一个0,然后剩下一个0放右边)
pad| |pad
inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0
|________________|
|_________________|
|_______________|