卷积神经网络padding为SAME和VALID的区别

本文详细解析了卷积神经网络中两种常见的Padding方式:SAME和VALID。通过具体实例展示了不同Padding方式下输入数据的处理过程,以及它们如何影响卷积层的输出尺寸。SAME Padding确保卷积操作后的特征图大小不变,而VALID Padding则不进行额外填充。
摘要由CSDN通过智能技术生成

卷积神经网络padding为SAME和VALID的区别

参考:https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t

“VALID”:不填充
“SAME”:首先尝试两边均匀填充(如果没法平分,就将平分之后剩余的填充在右边或下面)【还有一个含义就是卷积计算之后shape不改变】

例如:
如果:
Input width = 13, Filter width = 6, Stride = 5
则:
当padding="VALID"时:(12和13直接丢弃)

   inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                   |________________|                dropped
                                  |_______________|

当padding="SAME"时:(经过计算,需要填充3个0,首先左右两边分别填充一个0,然后剩下一个0放右边)

               pad|                                      |pad
   inputs:      0 |1  2  3  4  5  6  7  8  9  10 11 12 13|0  0
                |________________|
                               |_________________|
                                              |_______________|
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值