二叉树基本概念,前中后序遍历,删除!

二叉树

为什么需要树这种数据结构

1) 数组存储方式的分析
优点: 通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
缺点: 如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低

2) 链式存储方式的分析
优点: 在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可,删除效率也很好)。
缺点: 在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)

3) 树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也
可以保证数据的插入,删除,修改的速度。
在这里插入图片描述
在这里插入图片描述
树的常用术语(结合示意图理解):

  1. 节点
  2. 根节点
  3. 父节点
  4. 子节点
  5. 叶子节点 (没有子节点的节点)
  6. 节点的权(节点值)
  7. 路径(从 root 节点找到该节点的路线)
  8. 子树
  9. 树的高度(最大层数)
  10. 森林 :多颗子树构成森林

二叉树的概念

1)树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
2) 二叉树的子节点分为左节点和右节点
3) 示意图
在这里插入图片描述
4) 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树
在这里插入图片描述
5) 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
在这里插入图片描述


二叉树遍历的说明

使用前序,中序和后序对下面的二叉树进行遍历.

  1. 前序遍历: 先输出父节点,再遍历左子树和右子树

  2. 中序遍历: 先遍历左子树,再输出父节点,再遍历右子树

  3. 后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点

  4. 小结: 看输出父节点的顺序,就确定是前序,中序还是后序
    在这里插入图片描述
    完成删除思路分析:
    在这里插入图片描述

代码如下:

public class BinaryTreeDemo {
public static void main(String[] args) {
//测试一把中序线索二叉树的功能
HeroNode root = new HeroNode(1, “tom”);
HeroNode node2 = new HeroNode(3, “jack”);
HeroNode node3 = new HeroNode(6, “smith”);
HeroNode node4 = new HeroNode(8, “mary”);
HeroNode node5 = new HeroNode(10, “king”);
HeroNode node6 = new HeroNode(14, “dim”);
HeroNode node7 = new HeroNode(15, “asad”);
ThreadedBinaryTree tree = new ThreadedBinaryTree();
tree.setRoot(root);
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
node3.setRight(node7);
System.out.println(“删除前,前序遍历”);
tree.preOder();
tree.delete(10);
System.out.println(“删除后,前序遍历”);
tree.preOder();
//tree.preOder(); // 1,3,8,10,6,14,15
//tree.midOder(); // 8,1,10,1,14,6,15
//tree.postOder(); // 8,10,3,14,15,6,1
// HeroNode heroNode = tree.searchPre(14);
// HeroNode heroNode = tree.searchMid(14);
// HeroNode heroNode = tree.searchPost(14);
// if(heroNode != null) {
// System.out.println(“找到:=====》” + heroNode);
// }else {
// System.out.println(“没有找到”);
// }
}

 ////定义ThreadedBinaryTree 实现了线索化功能的二叉树
    static class ThreadedBinaryTree{
        private HeroNode root;
        public void setRoot(HeroNode root) {
            this.root = root;
        }
        // 前序查找
        public HeroNode searchPre(int no){
            if(root != null) {
                return root.searchPre(no);
            }else {
                System.out.println("二叉树为空,无法遍历");
                return null;
            }
        }
        // 中序查找
        public HeroNode searchMid(int no){
            if(root != null) {
                return root.searchMid(no);
            }else {
                System.out.println("二叉树为空,无法遍历");
                return null;
            }
        }
        // 前序查找
        public HeroNode searchPost(int no){
            if(root != null) {
                return root.searchPost(no);
            }else {
                System.out.println("二叉树为空,无法遍历");
                return null;
            }
        }
        //前序遍历
        public void preOder(){
            if(root != null) {
               root.preOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        //中序遍历
        public void midOder(){
            if(root != null) {
                root.midOder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        //前序遍历
        public void postOder(){
            if(root != null) {
                root.postOder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        public void delete(int no){
            if(root != null) {
                //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
                if(root.no == no) {
                    root = null;
                }else {
                    root.delete(no);
                }
            }else {
                System.out.println("空树,不能删除~");
            }
        }
    }


    /**
     * 节点
     */
    static class HeroNode{
        private int no;
        private String name;
        private HeroNode left;
        private HeroNode right;
        public HeroNode(int no, String name) {
            this.no = no;
            this.name = name;
        }
        /**
         * 前序遍历
         */
        public void preOrder(){
            // 先打印自己
            System.out.println(this);
            // 递归向左子树前序遍历
            if(left != null) {
                left.preOrder();
            }
            // 递归向右子树前序遍历
            if(right != null) {
                right.preOrder();
            }
        }
        /**
         * 中序遍历
         */
        public void midOder(){
            if(left != null) {
                left.midOder();
            }
            System.out.println(this);
            if(right != null) {
                right.midOder();
            }
        }
        /**
         * 后序遍历
         */
        public void postOder(){
            if(left != null) {
                left.postOder();
            }
            if(right != null) {
                right.postOder();
            }
            System.out.println(this);
        }
        
        /**
         * 前序查找
         */
        public HeroNode searchPre(int no){
            HeroNode searchNode = null;
            System.out.println("进入前序遍历");
            // 比较当前结点是不是
            if(this.no == no) {
                return this;
            }
            // 判断左树节点为不为空,如果不为空就遍历左树查找。
            if(left != null) {
                searchNode = left.searchPre(no);
            }
            // 如果遍历左树查找找到就返回
            if(searchNode != null) {
                return searchNode;
            }
            // 判断右树不为空,遍历查找,查到返回
            if(right != null) {
                searchNode = right.searchPre(no);
            }
            return searchNode;
        }
        /**
         * 中序查找
         */
        public HeroNode searchMid(int no){
            HeroNode searchNode = null;
            // 左子树不为空就遍历查找
            if(left != null) {
                searchNode = left.searchMid(no);
            }
            if(searchNode != null) {
                return searchNode;
            }
            // 左子树没有找到,跟本身比较
            System.out.println("进入中序遍历");
            if(this.no == no) {
                return this;
            }
            // 右子树不为空,遍历查找
            if(right != null) {
                searchNode = right.searchMid(no);
            }
            return searchNode;
        }
        /**
         * 后序查找
         */
        public HeroNode searchPost(int no){
            HeroNode searchNode=null;
            // 在左树查找有没有
            if(left != null) {
                searchNode = left.searchPost(no);
            }
            if(searchNode != null) {
                return searchNode;
            }
            // 在查找右树有没有
            if(right != null) {
                searchNode = right.searchPost(no);
            }
            if(searchNode != null) {
                return searchNode;
            }
            System.out.println("进入后序遍历");
            //跟自身比较
            if(this.no == no) {
                return this;
            }
            return searchNode;
        }
        /**
         * 删除 如果是结点直接删除结点,  如果是树直接删除树
         * @return
         */
        public void delete(int no){
            //思路
      /*
       *     1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
         2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
         3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
         4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
         5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.
       */
            if(left != null && left.no == no) {
                left = null;
                return;
            }
            if(right != null && right.no == no) {
                right = null;
                return;
            }
            if(left != null) {
                left.delete(no);
            }
            if(right != null) {
                right.delete(no);
            }
        }
        
        @Override
        public String toString() {
            return "HeroNode{" +
                    "no=" + no +
                    ", name='" + name + '\'' +
                    '}';
        }
        public int getNo() {
            return no;
        }
        public void setNo(int no) {
            this.no = no;
        }
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public HeroNode getLeft() {
            return left;
        }
        public void setLeft(HeroNode left) {
            this.left = left;
        }
        public HeroNode getRight() {
            return right;
        }
        public void setRight(HeroNode right) {
            this.right = right;
        }
    }
}
发布了51 篇原创文章 · 获赞 78 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览