Kuka LWR4 +机器人动力学模型的识别与仿真(翻译)

1、KUKA机器人的动力学模型辨识

     前言:在大多动力学建模中为了获得更精确的动力学模型,都有参数辨识这一过程。

来源:https://ww2.mathworks.cn/company/newsletters/articles/identifying-and-simulating-a-dynamic-model-of-the-kuka-lwr4-plus-robot.html

译文(Google版本):

       轻型、多关节Kuka LWR4机器人专为应用研究而设计,专注于开发控制算法以改善Kuka LMR4及其工业版Kuka IIWA(智能协作机器人)的性能。与大多数机器人一样,Kuka LWR4配备了电机位置传感器和电机电流传感器。该机器人的特殊之处在于在关节处嵌入关节扭矩传感器,用于检测与环境中物体的接触。正是这种能力使机器人能够与人类紧密合作,而不是在安全笼中,并执行需要精确控制的任务。

        有效的协作机器人(cobot)控制系统需要结合先进的技术,如阻抗控制,重力补偿和碰撞管理。设计这样的系统需要良好的动力学模型,并清楚地了解能耗,摩擦损失,振动行为和其他动力作业。对于Kuka LWR4,这样的模型并不容易获得,因为机器人参数没有公开并且每个特定的机器人参数也是不一致的。

  我和LS2N实验室的同事辨识了参数,并使用MATLAB®和Simulink®构建了Kuka LWR4的完整动力学模型。

Figure 1. The Kuka LWR4+ and diagram showing its seven articulated links.

 

             上图为机器人的连杆模型图和本体图

获取系统辨识数据

       为了收集数据,我们对机器人进行了编程,使其末端执行器通过一系列点(44个)移动。由此产生的轨迹在机器人的大部分可到达的工作区域内运行。当机器人移动时,我们以1 KHz(0.001s)的速率收集电机位置,电机电流和关节扭矩测量值。然后,我们使用连接到末端执行器的有效载荷重复这些测量。

将测量数据导入MATLAB后,我们通过应用Signal Processing Toolbox™的滤波器对其进行预处理。我们通过使用抽取滤波器应用并行抽取来消除高频噪声。我们将Butterworth带通滤波器应用于位置测量,以估计速度和加速度,并最小化在参数辨识过程中执行的最小二乘估计中的偏差。

用机器人逆动力学模型识别参数

        我们使用逆动力学模型(IDM)和最小二乘估计,这是一种使用电机位置和电机扭矩测量来识别动力学参数的成熟方法。我们通过结合关节扭矩数据来增强这种方法。

IDM基于一组方程式,它们将转矩计算为电机位置,速度和加速度的函数,所有这些都可以测量或计算。我们使用Symbolic Math Toolbox™开发基于Newton-Euler方程的IDM来描述电机和本体动力学。

IDM方程式考虑了机器人惯性参数矩阵以及离心力,重力和摩擦力参数的向量。为了从测量数据中辨识这些参数的值,我们在MATLAB中开发了采用线性最小二乘估计的自定义参数辨识算法。我们使用各种数据集应用这些算法,包括第一组仅具有电机电流和电机位置测量值,第二组具有电机位置和关节扭矩测量值,第三组具有电机电流,电机位置和关节扭矩测量值。我们通过交叉验证和System Identification Toolbox™提供的工具验证了我们的算法。

我们发现电动机电流或关节扭矩测量可以充分辨识动力学参数。实际上,仅根据电动机电流计算的电动机转矩可用于辨识每个连杆的惯性参数,其精度与包括关节转矩测量的方法相同。但是,当两个测量值一起使用时,我们不仅可以辨识连杆惯性,还可以辨识电机摩擦和电机惯性参数。

开发和模拟控制器模型

        为了开发控制器,我们创建了一个Simulink模型,其中包含一个MATLAB块,其中包含机器人的动力学模型,其形式为具有我们之前确定的参数值的方程式。 该块根据控制器提供的电机转矩值计算机器人连杆的位置,速度和加速度。模型如下:

Figure 2. Simulink model for simulating Kuka LWR4+ control strategies.

 

使用该模型,我们创建了一个混合比例 - 积分 - 微分(PID)计算扭矩控制器(computed torque controller),它根据机器人的位置跟踪误差计算所需的电机转矩如下图。 我们使用动力学辨识的结果计算了该控制器的增益。 与没有动力学模型设计的控制器相比,这种新型控制器可将跟踪位置误差降低2到5倍。

Figure 3.  Simulink model of a Kuka LWR4+ PID controller.

目前正在开发新的参数辨识算法,包括实时版本,以及用于工业和医疗应用的KUKA LWR4 +和其他协作机器人的新控制算法。

翻译后小结:

         本译文介绍了动力学参数辨识大概过程和方法,原作者通过比较含动力学模型的控制器与不含动力学模型的控制器的位置跟踪精度,验证了含动力学模型的控制器可以明显的提高机器人跟踪精度。

         具体细节以及如何使用MATLAB相应工具箱和算法得到辨识结果的仍需进一步探索研究!!!

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值