文章目录 1. 什么是Pytorch 2. 训练神经网络的流程 3. Training & Testing Neural Networks -in Pytorch 3.1 Step1 Load Data (Dataset &^ Dataloader) 3.1.1 Dataset 1)Loading a Dataset 2) Creating a Custom Dataset for your files 3.1.2 Dataloader 1) Preparing your data for training with DataLoaders 2) Iterate through the DataLoader 3.2 Bulid the Neural Network 3.2.1 Define Neural Network 1) Get Device for Training 2) Define the Class 3.3 Loss function 3.4 Optimization 3.5 Entire Procedure 1) Training Setup 2)Traning Loop 3) Validation Loop 4) Testing Loop 3.5 Save and Load THE MODEL 3.5.1 Saving and Loading Model Weights 3.5.2 Saving and Loading Models with Shapes 主要参考: 1. 什么是Pytorch 一种基于Python的机器学习框架 2个主要特点: *在GPU上计算 N维Tensor *在训练DNN时自动微分 2. 训练神经网络的流程 Training Neural Networks Training & Testing Neural Networks 3. Training & Testing Neural Networks -in Pytorch 3.1 Step1 Load Data (Dataset &^ Dataloader)