【tensorflow2.0】37.nlp实战之模型训练

    接着上一部分做模型的训练和优化。

#转化为ont-hot 独热编码
train_label = tf.keras.utils.to_categorical(train_label,num_classes=10,dtype='int')
val_label = tf.keras.utils.to_categorical(val_label,num_classes=10,dtype='int')
test_label = tf.keras.utils.to_categorical(test_label,num_classes=10,dtype='int')
#加载训练集数据并打乱,设定batch-size
train_dataset = tf.data.Dataset.from_tensor_slices((train_,train_label))
train_dataset = train_dataset.prefetch(buffer_size = tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(buffer_size = 23000)    
train_dataset = train_dataset.batch(batch_size=128)
#加载验证集数据并打乱,设定batch-size
val_dataset = tf.data.Dataset.from_tensor_slices((val_,val_label))
val_dataset = val_dataset.prefetch(tf.data.experimental.AUTOTUNE)
val_dataset = val_dataset.shuffle(buffer_size=23000)    
val_dataset = val_dataset.batch(batch_size=256)
#设置学习率
learning_rate = 0.001
#设置损失函数
loss_object = tf.keras.losses.CategoricalCrossentropy()
#设置优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
#训练集评估指标
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')
#测试集评估指标
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')
#下边是自定义训练的两个函数,之间有过讲解,这里不再说明
#mini-batch
def train_one_step(contents, labels):
    with tf.GradientTape() as tape:
        predictions = model(contents)
        loss = loss_object(labels, predictions)
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))

    train_loss(loss) #update
    train_accuracy(labels, predictions)#update


def test_one_step(contents, labels):
    predictions = model(contents)
    t_loss = loss_object(labels, predictions)

    test_loss(t_loss)
    test_accuracy(labels, predictions)
#设定10个周期 开始训练
EPOCHS=10
for epoch in range(EPOCHS):
    # 在下一个epoch开始时,重置评估指标
    train_loss.reset_states()
    train_accuracy.reset_states()
    test_loss.reset_states()
    test_accuracy.reset_states()

    for content, labels in train_dataset:
        train_one_step(content, labels) #mini-batch 更新

    for val_content, val_labels in val_dataset:
        test_one_step(val_content, val_labels)

    template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
    print(template.format(epoch + 1,
                          train_loss.result(),
                          train_accuracy.result() * 100,
                          test_loss.result(),
                          test_accuracy.result() * 100
                         ))


在这里插入图片描述

### 文本分类 #### 数据预处理 要求训练集和测试集分开存储,对于中文的数据必须先分词,对分词后的词用空格符分开,并且将标签连接到每条数据的尾部,标签和句子用分隔符\分开。具体的如下: * 今天 的 天气 真好\积极 #### 文件结构介绍 * config文件:配置各种模型的配置参数 * data:存放训练集和测试集 * ckpt_model:存放checkpoint模型文件 * data_helpers:提供数据处理的方法 * pb_model:存放pb模型文件 * outputs:存放vocab,word_to_index, label_to_index, 处理后的数据 * models:存放模型代码 * trainers:存放训练代码 * predictors:存放预测代码 #### 训练模型 * python train.py --config_path="config/textcnn_config.json" #### 预测模型 * 预测代码都在predictors/predict.py中,初始化Predictor对象,调用predict方法即可。 #### 模型的配置参数详述 ##### textcnn:基于textcnn的文本分类 * model_name:模型名称 * epochs:全样本迭代次数 * checkpoint_every:迭代多少步保存一次模型文件 * eval_every:迭代多少步验证一次模型 * learning_rate:学习速率 * optimization:优化算法 * embedding_size:embedding层大小 * num_filters:卷积核的数量 * filter_sizes:卷积核的尺寸 * batch_size:批样本大小 * sequence_length:序列长度 * vocab_size:词汇表大小 * num_classes:样本的类别数,二分类时置为1,多分类时置为实际类别数 * keep_prob:保留神经元的比例 * l2_reg_lambda:L2正则化的系数,主要对全连接层的参数正则化 * max_grad_norm:梯度阶段临界值 * train_data:训练数据的存储路径 * eval_data:验证数据的存储路径 * stop_word:停用词表的存储路径 * output_path:输出路径,用来存储vocab,处理后的训练数据,验证数据 * word_vectors_path:词向量的路径 * ckpt_model_path:checkpoint 模型的存储路径 * pb_model_path:pb 模型的存储路径 ##### bilstm:基于bilstm的文本分类 * model_name:模型名称 * epochs:全样本迭代次数 * checkpoint_every:迭代多少步保存一次模型文件 * eval_every:迭代多少步验证一次模型 * learning_rate:学习速率 * optimization:优化算法 * embedding_size:embedding层大小 * hidden_sizes:lstm的隐层大小,列表对象,支持多层lstm,只要在列表中添加相应的层对应的隐层大小 * batch_size:批样本大小 * sequence_length:序列长度 * vocab_size:词汇表大小 * num_classes:样本的类别数,二分类时置为1,多分类时置为实际类别数 * keep_prob:保留神经元的比例 * l2_reg_lambda:L2正则化的系数,主要对全连接层的参数正则化 * max_grad_norm:梯度阶段临界值 * train_data:训练数据的存储路径 * eval_data:验证数据的存储路径 * stop_word:停用词表的存储路径 * output_path:输出路径,用来存储vocab,处理后的训练数据,验证数据 * word_vectors_path:词向量的路径 * ckpt_model_path:checkpoint 模型的存储路径 * pb_model_path:pb 模型的存储路径 ##### bilstm atten:基于bilstm + attention 的文本分类 * model_name:模型名称 * epochs:全样本迭代次数 * checkpoint_every:迭代多少步保存一次模型文件 * eval_every:迭代多少步验证一次模型 * learning_rate:学习速率 * optimization:优化算法 * embedding_size:embedding层大小 * hidd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值