https://www.lydsy.com/JudgeOnline/problem.php?id=4028
总结:分块暴力;数组前缀gcd必定非增!!
#include<bits/stdc++.h>
using namespace std;
#define sfi(i) scanf("%d",&i)
#define sfs(i) scanf("%s",(i))
#define pri(i) printf("%d\n",i)
#define sff(i) scanf("%lf",&i)
#define ll long long
#define ull unsigned long long
#define mem(x,y) memset(x,y,sizeof(x))
#define INF 0x3f3f3f3f
#define eps 1e-8
#define PI acos(-1.0)
#define lowbit(x) ((x)&(-x))
#define zero(x) (((x)>0?(x):-(x))<eps)
#define fl() printf("flag\n")
#define MOD(x) ((x%mod)+mod)%mod
#define endl '\n'
#define pb push_back
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
//----------------------------------------------------------
const int BufferSize = 1 << 16;
char buffer[BufferSize], *head, *tail;
inline char Getchar() {
if (head == tail) {
int l = fread(buffer, 1, BufferSize, stdin);
tail = (head = buffer) + l;
}
return *head++;
}
inline ll read() {
ll x = 0, f = 1;char c = Getchar();
for (;!isdigit(c);c = Getchar()) if (c == '-') f = -1;
for (;isdigit(c);c = Getchar()) x = x * 10 + c - '0';
return x * f;
}
//----------------------------------------------------------
const int maxn=1e5+9;
int Be[maxn];
int a[maxn];
int g[maxn];
int xo[maxn];
int le[1009],ri[1009];
set<int>st[1009];
void update(int pos)
{
st[pos].clear();
g[le[pos]]=a[le[pos]];
xo[le[pos]]=a[le[pos]];
st[pos].insert(xo[le[pos]]);
for(int i=le[pos]+1;i<=ri[pos];i++)
{
g[i]=__gcd(g[i-1],a[i]);
xo[i]=xo[i-1]^a[i];
st[pos].insert(xo[i]);
}
}
int main()
{
//FAST_IO;
//freopen("input.txt","r",stdin);
int n;
//cin>>n;
sfi(n);
int unit=(int)sqrt(n);
int tot=(n-1)/unit+1;
for(int i=1;i<=n;i++) sfi(a[i]);
for(int i=1;i<=n;i++)
{
Be[i]=(i-1)/unit+1;
if(!le[Be[i]])le[Be[i]]=i;
ri[Be[i]]=i;
}
for(int i=1;i<=tot;i++) update(i);
int m;
//cin>>m;
sfi(m);
while(m--)
{
char op[10];
scanf("%s",op);
if(op[0]=='M')
{
int x;
int id;
//cin>>id>>x;
scanf("%d%d",&id,&x);
id++;
a[id]=x;
update(Be[id]);
}
else
{
int lxor=0;
int lgcd=0;
ll x;
//cin>>x;
scanf("%lld\n",&x);
int pos=0;
for(int i=1;i<=tot;i++)
{
int tmp=__gcd(lgcd,g[ri[i]]);
if(tmp!=lgcd)
{
for(int j=le[i];j<=ri[i];j++)
{
//ll k=(ll)__gcd(lgcd,g[j])*(ll)(xo[j]^lxor);
if((ll)__gcd(lgcd,g[j])*(ll)(xo[j]^lxor)==x)
{
pos=j;
break;
}
if(pos) break;
}
}
else
{
if(x%tmp==0&&st[i].count((int)(x/tmp)^lxor))
{
for(int j=le[i];j<=ri[i];j++)
{
//ll k=(ll)__gcd(lgcd,g[j])*(ll)(xo[j]^lxor);
if((ll)__gcd(lgcd,g[j])*(ll)(xo[j]^lxor)==x)
{
pos=j;
break;
}
if(pos) break;
}
}
}
if(pos) break;
lgcd=tmp;
lxor^=xo[ri[i]];
}
if(!pos) puts("no");
else pri(pos-1);
}
}
return 0;
}