Datawhale组队学习-图神经网络(四)

Datawhale组队学习-图神经网络(四)

数据完全存于内存的数据集类 + 节点预测与边预测任务实践

对于占用内存有限的数据集,我们可以将整个数据集的数据都存储到内存里。PyG为我们提供了方便的方式来构造数据完全存于内存的数据集类(简称为InMemory数据集类)。在此小节我们就将学习构造InMemory数据集类的方式。

此次学习内容如下:

  • 学习PyG规定的使用数据的一般过程

  • 学习InMemoryDataset基类

  • 学习一个简化的InMemory数据集类

  • 学习一个InMemory数据集类实例,以及使用该数据集类时会发生的一些过程

  • 利用PlanetoidPubMed数据集类,来实践节点预测与边预测任务

    注:边预测任务实践中的代码来源于link_pred.py

一、使用数据集的一般过程

PyG定义了使用数据的一般过程

  1. 从网络上下载数据原始文件;
  2. 对数据原始文件做处理,为每一个图样本生成一个**Data对象**;
  3. 对每一个Data对象执行数据处理,使其转换成新的Data对象;
  4. 过滤Data对象
  5. 保存Data对象到文件
  6. 获取Data对象,在每一次获取Data对象时,都先对Data对象做数据变换(于是获取到的是数据变换后的Data对象)。

实际中并非需要严格执行每一个步骤,

以上步骤在特定的条件下可以被跳过,具体内容在下文里会学到。

二、InMemoryDataset基类简介

在PyG中,我们通过继承InMemoryDataset类来自定义一个数据可全部存储到内存的数据集类。

class InMemoryDataset(root: Optional[str] = None, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None)

InMemoryDataset类初始化方法参数说明:

  • root:字符串类型,存储数据集的文件夹的路径。该文件夹下有两个文件夹:
    • 一个文件夹为记录在**raw_dir,它用于存储未处理的文件,从网络上下载的数据集原始文件**会被存放到这里;
    • 另一个文件夹记录在**processed_dir**,处理后的数据被保存到这里,以后从此文件夹下加载文件即可获得Data对象。
    • 注:raw_dirprocessed_dir是属性方法,我们可以自定义要使用的文件夹。
  • transform:函数类型,一个数据转换函数,它接收一个Data对象并返回一个转换后的Data对象。此函数在每一次数据获取过程中都会被执行。获取数据的函数首先使用此函数对Data对象做转换,然后才返回数据。此函数应该用于数据增广(Data Augmentation)。该参数默认值为None,表示不对数据做转换。
  • pre_transform:函数类型,一个数据转换函数,它接收一个Data对象并返回一个转换后的Data对象。此函数在Data对象被保存到文件前调用。因此它应该用于只执行一次的数据预处理。该参数默认值为None,表示不做数据预处理。
  • pre_filter:函数类型,一个检查数据是否要保留的函数,它接收一个Data对象,返回此Data对象是否应该被包含在最终的数据集中。此函数也在Data对象被保存到文件前调用。该参数默认值为None,表示不做数据检查,保留所有的数据。

通过继承InMemoryDataset类来构造一个我们自己的数据集类,我们需要实现四个基本方法

  • raw_file_names():这是一个属性方法,返回一个数据集原始文件的文件名列表,数据集原始文件应该能在raw_dir文件夹中找到,否则调用process()函数下载文件到raw_dir文件夹。
  • processed_file_names()。这是一个属性方法,返回一个存储处理过的数据的文件的文件名列表,存储处理过的数据的文件应该能在processed_dir文件夹中找到,否则调用process()函数对样本做处理,然后保存处理过的数据到processed_dir文件夹下的文件里。
  • download(): 下载数据集原始文件raw_dir文件夹。
  • process(): 处理数据保存处理好的数据到processed_dir文件夹下的文件

三、一个简化的InMemory数据集类

以下是一个简化的自定义的数据集类的例子:

import torch
from torch_geometric.data import InMemoryDataset, download_url

class MyOwnDataset(InMemoryDataset):
    def __init__(self, root, transform=None, pre_transform=None, pre_filter=None):
        super().__init__(root=root, transform=transform, pre_transform=pre_transform, pre_filter=pre_filter)
        self.data, self.slices = torch.load(self.processed_paths[0])

    @property
    def raw_file_names(self):
        return ['some_file_1', 'some_file_2', ...]

    @property
    def processed_file_names(self):
        return ['data.pt']

    def download(self):
        # Download to `self.raw_dir`.
        download_url(url, self.raw_dir)
        ...

    def process(self):
        # Read data into huge `Data` list.
        data_list = [...]

        if self.pre_filter is not None:
            data_list = [data for data in data_list if self.pre_filter(data)]

        if self.pre_transform is not None:
            data_list = [self.pre_transform(data) for data in data_list]

        data, slices = self.collate(data_list)
        torch.save((data, slices), self.processed_paths[0])


  • raw_file_names属性方法里,也就是第11行,写上数据集原始文件有哪些,在此例子中有some_file_1, some_file_2等。
  • processed_file_names属性方法里,也就是第15行,处理过的数据要保存在哪些文件里,在此例子中只有data.pt
  • download方法里,我们实现下载数据到self.raw_dir文件夹的逻辑。
  • process方法里,我们实现数据处理的逻辑:
    • 首先,我们从数据集原始文件中读取样本并生成Data对象,所有样本的Data对象保存在列表data_list中。
    • 其次,如果要对数据做过滤的话,我们执行数据过滤的过程。
    • 接着,如果要对数据做处理的话,我们执行数据处理的过程。
    • 最后,我们保存处理好的数据到文件。但由于python保存一个巨大的列表是相当慢的,我们需要先将所有Data对象合并成一个巨大的Data对象再保存。collate()函数接收一个列表的Data对象,返回合并后的Data对象以及用于从合并后的Data对象重构各个原始Data对象的切片字典slices。最后我们将这个巨大的Data对象和切片字典slices保存到文件。

四、InMemoryDataset数据集类实例

我们以公开数据集PubMed为例子,进行InMemoryDataset数据集实例分析。PubMed数据集存储的是文章引用网络,文章对应图的结点,如果两篇文章存在引用关系(无论引用与被引用),则这两篇文章对应的结点之间存在边。该数据集来源于论文Revisiting Semi-Supervised Learning with Graph Embeddings。PyG中的Planetoid数据集类包含了数据集PubMed的使用,因此我们直接基于Planetoid类进行修改,得到PlanetoidPubMed数据集类。

我们将首先学习PlanetoidPubMed数据集类的构造,其次学习使用PlanetoidPubMed数据集类时会发生的过程。

PlanetoidPubMed数据集类的构造

PlanetoidPubMed数据集类如下所示:

import os.path as osp

import torch
from torch_geometric.data import (InMemoryDataset, download_url)
from torch_geometric.io import read_planetoid_data

class PlanetoidPubMed(InMemoryDataset):
    r""" 节点代表文章,边代表引用关系。
   		 训练、验证和测试的划分通过二进制掩码给出。
    参数:
        root (string): 存储数据集的文件夹的路径
        transform (callable, optional): 数据转换函数,每一次获取数据时被调用。
        pre_transform (callable, optional): 数据转换函数,数据保存到文件前被调用。
    """

    url = 'https://github.com/kimiyoung/planetoid/raw/master/data'
    # url = 'https://gitee.com/rongqinchen/planetoid/raw/master/data'
    # 如果github的链接不可用,请使用gitee的链接

    def __init__(self, root, transform=None, pre_transform=None):

        super(PlanetoidPubMed, self).__init__(root, transform, pre_transform)
        self.data, self.slices = torch.load(self.processed_paths[0])

    @property
    def raw_dir(self):
        return osp.join(self.root, 'raw')

    @property
    def processed_dir(self):
        return osp.join(self.root, 'processed')

    @property
    def raw_file_names(self):
        names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
        return ['ind.pubmed.{}'.format(name) for name in names]

    @property
    def processed_file_names(self):
        return 'data.pt'

    def download(self):
        for name in self.raw_file_names:
            download_url('{}/{}'.format(self.url, name), self.raw_dir)

    def process(self):
        data = read_planetoid_data(self.raw_dir, 'pubmed')
        data = data if self.pre_transform is None else self.pre_transform(data)
        torch.save(self.collate([data]), self.processed_paths[0])

    def __repr__(self):
        return '{}()'.format(self.name)

该类初始化方法的参数说明见代码。代码中还实现了raw_dir()processed_dir()两个属性方法,通过修改返回值,我们就可以修改要使用的文件夹。

该数据集类的使用

在我们生成一个PlanetoidPubMed类的对象时,程序运行流程如下:

  • 首先,检查数据原始文件是否已下载
    • 检查self.raw_dir目录下是否存在raw_file_names()属性方法返回的每个文件,
    • 如有文件不存在,则调用download()方法执行原始文件下载。
    • self.raw_dirosp.join(self.root, 'raw')
  • 其次,检查数据是否经过处理
    • 首先,检查之前对数据做变换的方法:检查self.processed_dir目录下是否存在pre_transform.pt文件:
      • 如果存在,意味着之前进行过数据变换,接着需要加载该文件,以获取之前所用的数据变换的方法,并检查它与当前pre_transform参数指定的方法是否相同,
        • 如果不相同则会报出一个警告,“The pre_transform argument differs from the one used in ……”。
      • self.processed_dirosp.join(self.root, 'processed')
    • 其次,检查之前的样本过滤的方法:检查self.processed_dir目录下是否存在pre_filter.pt文件:
      • 如果存在,则加载该文件并获取之前所用的样本过滤的方法,并检查它与当前pre_filter参数指定的方法是否相同,
        • 如果不相同则会报出一个警告,“The pre_filter argument differs from the one used in ……”。
    • 接着,检查是否存在处理好的数据:检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,如有文件不存在,则需要执行以下的操作:
      • 调用process()方法,进行数据处理。
      • 如果pre_transform参数不为None,则调用pre_transform()函数进行数据处理。
      • 如果pre_filter参数不为None,则进行样本过滤(此例子中不需要进行样本过滤,pre_filter参数为None)。
      • 保存处理好的数据到文件,文件存储在**processed_paths()**属性方法返回的文件路径。如果将数据保存到多个文件中,则返回的路径有多个。
        • processed_paths()属性方法是在基类中定义的,它对self.processed_dir文件夹与processed_file_names()属性方法的返回每一个文件名做拼接,然后返回。
      • 最后保存新的pre_transform.pt文件和pre_filter.pt文件,它们分别存储当前使用的数据处理方法和样本过滤方法。

最后让我们来查看这个数据集

dataset = PlanetoidPubMed('dataset/PlanetoidPubMed')
print(dataset.num_classes)
print(dataset[0].num_nodes)
print(dataset[0].num_edges)
print(dataset[0].num_features)

# 3
# 19717
# 88648
# 500

可以看到这个数据集包含三个分类任务,共19,717个结点,88,648条边,节点特征维度为500。

六、节点预测任务实践

之前我们学习过由2层GATConv组成的图神经网络,现在我们重定义一个GAT图神经网络,使其能够通过参数来定义GATConv的层数,以及每一层GATConvout_channels。我们的图神经网络定义如下:

class GAT(torch.nn.Module):
    def __init__(self, num_features, hidden_channels_list, num_classes):
        super(GAT, self).__init__()
        torch.manual_seed(12345)
        hns = [num_features] + hidden_channels_list
        conv_list = []
        for idx in range(len(hidden_channels_list)):
            conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
            conv_list.append(ReLU(inplace=True),)

        self.convseq = Sequential('x, edge_index', conv_list)
        self.linear = Linear(hidden_channels_list[-1], num_classes)

    def forward(self, x, edge_index):
        x = self.convseq(x, edge_index)
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.linear(x)
        return x


由于我们的神经网络由多个GATConv顺序相连而构成,因此我们使用了torch_geometric.nn.Sequential容器,详细内容可见于官方文档

我们通过hidden_channels_list参数来设置每一层GATConvoutchannel,所以hidden_channels_list长度即为GATConv的层数。通过修改hidden_channels_list,我们就可构造出不同的图神经网络。

完整的代码可见于codes/node_classification.py。请小伙伴们自行完成代码中图神经网络类的训练、验证和测试。

七、边预测任务实践

边预测任务,目标是预测两个节点之间是否存在边。拿到一个图数据集,我们有节点属性x,边端点edge_indexedge_index存储的便是正样本。为了构建边预测任务,我们需要生成一些负样本,即采样一些不存在边的节点对作为负样本边,正负样本数量应平衡。此外要将样本分为训练集、验证集和测试集三个集合。

PyG中为我们提供了现成的采样负样本边的方法,train_test_split_edges(data, val_ratio=0.05, test_ratio=0.1),其

  • 第一个参数为torch_geometric.data.Data对象,
  • 第二参数为验证集所占比例,
  • 第三个参数为测试集所占比例。

该函数将自动地采样得到负样本,并将正负样本分成训练集、验证集和测试集三个集合。它用train_pos_edge_indextrain_neg_adj_maskval_pos_edge_indexval_neg_edge_indextest_pos_edge_indextest_neg_edge_index,六个属性取代edge_index属性。

注意train_neg_adj_mask与其他属性格式不同,其实该属性在后面并没有派上用场,后面我们仍然需要进行一次训练集负样本采样。

下面我们使用Cora数据集作为例子,进行边预测任务说明。

获取数据集并进行分析

首先是获取数据集并进行分析

import os.path as osp

from torch_geometric.utils import negative_sampling
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.utils import train_test_split_edges

dataset = Planetoid('dataset', 'Cora', transform=T.NormalizeFeatures())
data = dataset[0]
data.train_mask = data.val_mask = data.test_mask = data.y = None # 不再有用

print(data.edge_index.shape)
# torch.Size([2, 10556])

data = train_test_split_edges(data)

for key in data.keys:
    print(key, getattr(data, key).shape)

# x torch.Size([2708, 1433])
# val_pos_edge_index torch.Size([2, 263])
# test_pos_edge_index torch.Size([2, 527])
# train_pos_edge_index torch.Size([2, 8976])
# train_neg_adj_mask torch.Size([2708, 2708])
# val_neg_edge_index torch.Size([2, 263])
# test_neg_edge_index torch.Size([2, 527])
# 263 + 527 + 8976 = 9766 != 10556
# 263 + 527 + 8976/2 = 5278 = 10556/2

我们观察到训练集、验证集和测试集中正样本边的数量之和不等于原始边的数量。这是因为,现在所用的Cora图是无向图,在统计原始边数量时,每一条边的正向与反向各统计了一次,训练集也包含边的正向与反向,但验证集与测试集都只包含了边的一个方向。

**为什么训练集要包含边的正向与反向,而验证集与测试集都只包含了边的一个方向?**这是因为,训练集用于训练,训练时一条边的两个端点要互传信息,只考虑一个方向的话,只能由一个端点传信息给另一个端点,而验证集与测试集的边用于衡量检验边预测的准确性,只需考虑一个方向的边即可。

边预测图神经网络的构造

接下来构造神经网络

import torch
from torch_geometric.nn import GCNConv

class Net(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Net, self).__init__()
        self.conv1 = GCNConv(in_channels, 128)
        self.conv2 = GCNConv(128, out_channels)

    def encode(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        return self.conv2(x, edge_index)

    def decode(self, z, pos_edge_index, neg_edge_index):
        edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
        return (z[edge_index[0]] * z[edge_index[1]]).sum(dim=-1)

    def decode_all(self, z):
        prob_adj = z @ z.t()
        return (prob_adj > 0).nonzero(as_tuple=False).t()

用于做边预测的神经网络主要由两部分组成:其一是编码(encode),它与我们前面介绍的节点表征生成是一样的;其二是解码(decode),它根据边两端节点的表征生成边为真的几率(odds)。decode_all(self, z)用于推理(inference)阶段,我们要对所有的节点对预测存在边的几率。

边预测图神经网络的训练

定义单个epoch的训练过程

def get_link_labels(pos_edge_index, neg_edge_index):
    num_links = pos_edge_index.size(1) + neg_edge_index.size(1)
    link_labels = torch.zeros(num_links, dtype=torch.float)
    link_labels[:pos_edge_index.size(1)] = 1.
    return link_labels

def train(data, model, optimizer):
    model.train()

    neg_edge_index = negative_sampling(
        edge_index=data.train_pos_edge_index,
        num_nodes=data.num_nodes,
        num_neg_samples=data.train_pos_edge_index.size(1))

    optimizer.zero_grad()
    z = model.encode(data.x, data.train_pos_edge_index)
    link_logits = model.decode(z, data.train_pos_edge_index, neg_edge_index)
    link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index).to(data.x.device)
    loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)
    loss.backward()
    optimizer.step()

    return loss

通常,存在边的节点对的数量往往少于不存在边的节点对的数量。我们在每一个epoch的训练过程中,都进行一次训练集负样本采样。采样到的样本数量与训练集正样本相同,但不同epoch中采样到的样本是不同的。这样做,我们既能实现类别数量平衡,又能实现增加训练集负样本的多样性。在负样本采样时,我们传递了train_pos_edge_index为参数,于是negative_sampling()函数只会在训练集中不存在边的节点对中采样。get_link_labels()函数用于生成完整训练集的标签。

注:在训练阶段,我们应该只见训练集,对验证集与测试集都是不可见的。所以我们没有使用所有的边,而是只用了训练集正样本边。

定义单个epoch验证与测试过程

@torch.no_grad()
def test(data, model):
    model.eval()

    z = model.encode(data.x, data.train_pos_edge_index)

    results = []
    for prefix in ['val', 'test']:
        pos_edge_index = data[f'{prefix}_pos_edge_index']
        neg_edge_index = data[f'{prefix}_neg_edge_index']
        link_logits = model.decode(z, pos_edge_index, neg_edge_index)
        link_probs = link_logits.sigmoid()
        link_labels = get_link_labels(pos_edge_index, neg_edge_index)
        results.append(roc_auc_score(link_labels.cpu(), link_probs.cpu()))
    return results

注:在验证与测试阶段,我们也应该只见训练集,对验证集与测试集都是不可见的。所以在验证与测试阶段,我们依然只用训练集正样本边。

运行完整的训练、验证与测试

def main():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    dataset = 'Cora'
    path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
    dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
    data = dataset[0]
    ground_truth_edge_index = data.edge_index.to(device)
    data.train_mask = data.val_mask = data.test_mask = data.y = None
    data = train_test_split_edges(data)
    data = data.to(device)

    model = Net(dataset.num_features, 64).to(device)
    optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)

    best_val_auc = test_auc = 0
    for epoch in range(1, 101):
        loss = train(data, model, optimizer)
        val_auc, tmp_test_auc = test(data, model)
        if val_auc > best_val_auc:
            best_val_auc = val_auc
            test_auc = tmp_test_auc
        print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Val: {val_auc:.4f}, '
              f'Test: {test_auc:.4f}')

    z = model.encode(data.x, data.train_pos_edge_index)
    final_edge_index = model.decode_all(z)


if __name__ == "__main__":
    main()

完整的代码可见于codes/edge_prediction.py

参考资料

结语

在完整的第6节内容中,我们学习了

  • PyG中规定的使用数据的一般过程;
  • InMemoryDataset基类;
  • 一个简化的InMemory数据集类;
  • 一个InMemory数据集类实例,以及使用该数据集类时会发生的一些过程;
  • 节点预测任务实践;
  • 边预测任务实践。

我们需要重点关注**InMemory数据集类的运行流程与其四个方法的定义的规范**,同时我们还应该重点关注边预测任务中的数据集划分训练集负样本采样,以及训练、验证与测试三个阶段使用的边

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值