AVL树理解

平衡二叉树

      平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

平衡因子

通过“平衡因子”来判断一颗二叉树是否符合高度平衡。

对于AVL树的每一个结点,平衡因子是它的左子树高度和右子树高度的差值。只有当二叉树所有结点的平衡因子都是-1, 0, 1这三个值的时候,这颗二叉树才是一颗合格的AVL树。

 

  • 其中结点4的左子树高度是1,右子树不存在,所以该结点的平衡因子是1-0=1。
  • 结点7的左子树不存在,右子树高度是1,所以平衡因子是0-1=-1。
  • 所有的叶子结点,不存在左右子树,所以平衡因子都是0。

打破平衡

点4的左右子树高度差超过了1,打破了AVL树的平衡。

红黑树包括左旋转、右旋转、变色这三种操作。而AVL树不存在变色的问题,只有左旋转右旋转这两种操作。

左旋转:

逆时针旋转AVL树的两个结点X和Y,使得父结点被自己的右孩子取代,而自己成为自己的左孩子。说起来有些绕,见下图(标号1,2,3的三角形,是结点X和Y的子树)

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

 

右旋转:

顺时针旋转AVL树的两个结点X和Y,使得父结点被自己的左孩子取代,而自己成为自己的右孩子。见下图:

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

何时旋转?

1. 左左局面(LL)

 

顾名思义,祖父结点A有一个左孩子结点B,而结点B又有一个左孩子结点C。标号1,2,3,4的三角形是各个结点的子树。

在这种局面下,我们以结点A为轴,进行右旋操作:

2. 右右局面(RR)

祖父结点A有一个右孩子结点B,而结点B又有一个右孩子结点C。

在这种局面下,我们以结点A为轴,进行左旋操作:

3. 左右局面(LR)

祖父结点A有一个左孩子结点B,而结点B又有一个右孩子结点C。

在这种局面下,我们先以结点B为轴,进行左旋操作:

这样就转化成了左左局面。我们继续以结点A为轴,进行右旋操作:

4. 右左局面(RL)

 

祖父结点A有一个右孩子结点B,而结点B又有一个左孩子结点C。

在这种局面下,我们先以结点B为轴,进行右旋操作:

这样就转化成了右右局面。我们继续以结点A为轴,进行左旋操作:

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页