XNOR-Net-PyTorch实验

XNOR-Net-PyTorch测试

在CNN中有两个非常有名的二进制类的网络模型,一个叫做Binary-Weighted-Networks,一个叫做XNOR-Net。二元权重网络中,卷积核用两个值来近似表示,从而节省32倍的存储空间。在XNOR网络中,卷积核和卷积层输入都是用两个值(1和-1)表示的。 XNOR网络主要使用二元运算进行卷积运算。这使得卷积操作速度提高了58倍,节省了32倍的内存。 XNOR网络实现了在CPU(而不是GPU)上实时运行最先进网络的可能。

参考

代码来源于GitHub,项目地址

实验结果

Data_set基础网络模型Test Accuracy模型大小
MNISTLenet-599.00%1.64M
CIFAR-10NIN86.12%3.72M

实验过程

基于LeNet-5的XNOR-net在MNIST数据集上的训练结果
Namespace(arch='LeNet_5', batch_size=128, cuda=True, epochs=60, evaluate=False, log_interval=100, lr=0.01, lr_epochs=15, momentum=0.9, no_cuda=False, pretrained=None, seed=1, test_batch_size=128, weight_decay=1e-05)
LeNet_5(
  (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
  (bn_conv1): BatchNorm2d(20, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
  (relu_conv1): ReLU(inplace)
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (bin_conv2): BinConv2d(
    (bn): BatchNorm2d(20, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
    (conv): Conv2d(20, 50, kernel_size=(5, 5), stride=(1, 1))
    (relu): ReLU(inplace)
  )
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (bin_ip1): BinConv2d(
    (bn): BatchNorm2d(50, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
    (linear): Linear(in_features=800, out_features=500, bias=True)
    (relu): ReLU(inplace)
  )
  (ip2): Linear(in_features=500, out_features=10, bias=True)
)
Learning rate: 0.01
Train Epoch: 1 [0/60000 (0%)]	Loss: 2.301339
Train Epoch: 1 [12800/60000 (21%)]	Loss: 0.206438
Train Epoch: 1 [25600/60000 (43%)]	Loss: 0.139996
Train Epoch: 1 [38400/60000 (64%)]	Loss: 0.053089
Train Epoch: 1 [51200/60000 (85%)]	Loss: 0.363078
main.py:64: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
  data, target = Variable(data, volatile=True), Variable(target)
==> Saving model ...

Test set: Average loss: 0.1444, Accuracy: 9593/10000 (95.00%)
Best Accuracy: 95.00%

Learning rate: 0.01
Train Epoch: 2 [0/60000 (0%)]	Loss: 0.290992
Train Epoch: 2 [12800/60000 (21%)]	Loss: 0.066965
Train Epoch: 2 [25600/60000 (43%)]	Loss: 0.203039
Train Epoch: 2 [38400/60000 (64%)]	Loss: 0.200744
Train Epoch: 2 [51200/60000 (85%)]	Loss: 0.206140
==> Saving model ...

Test set: Average loss: 0.1496, Accuracy: 9637/10000 (96.00%)
Best Accuracy: 96.00%

Learning rate: 0.01
Train Epoch: 3 [0/60000 (0%)]	Loss: 0.170542
Train Epoch: 3 [12800/60000 (21%)]	Loss: 0.083674
Train Epoch: 3 [25600/60000 (43%)]	Loss: 0.219202
Train Epoch: 3 [38400/60000 (64%)]	Loss: 0.138911
Train Epoch: 3 [51200/60000 (85%)]	Loss: 0.224724

...

Learning rate: 1.0000000000000002e-06
Train Epoch: 60 [0/60000 (0%)]	Loss: 0.006104
Train Epoch: 60 [12800/60000 (21%)]	Loss: 0.002640
Train Epoch: 60 [25600/60000 (43%)]	Loss: 0.000195
Train Epoch: 60 [38400/60000 (64%)]	Loss: 0.004205
Train Epoch: 60 [51200/60000 (85%)]	Loss: 0.000068

Test set: Average loss: 0.0312, Accuracy: 9920/10000 (99.00%)
Best Accuracy: 99.00%

基于NIN的XNOR-net在MNIST数据集上的训练结果
==> Options: Namespace(arch='nin', cpu=False, data='./data/', evaluate=False, lr='0.01', pretrained=None)
==> building model nin ...
==> Initializing model parameters ...
DataParallel(
  (module): Net(
    (xnor): Sequential(
      (0): Conv2d(3, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (1): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
      (2): ReLU(inplace)
      (3): BinConv2d(
        (bn): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (conv): Conv2d(192, 160, kernel_size=(1, 1), stride=(1, 1))
        (relu): ReLU(inplace)
      )
      (4): BinConv2d(
        (bn): BatchNorm2d(160, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (conv): Conv2d(160, 96, kernel_size=(1, 1), stride=(1, 1))
        (relu): ReLU(inplace)
      )
      (5): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
      (6): BinConv2d(
        (bn): BatchNorm2d(96, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (dropout): Dropout(p=0.5)
        (conv): Conv2d(96, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
        (relu): ReLU(inplace)
      )
      (7): BinConv2d(
        (bn): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))
        (relu): ReLU(inplace)
      )
      (8): BinConv2d(
        (bn): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))
        (relu): ReLU(inplace)
      )
      (9): AvgPool2d(kernel_size=3, stride=2, padding=1)
      (10): BinConv2d(
        (bn): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (dropout): Dropout(p=0.5)
        (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (relu): ReLU(inplace)
      )
      (11): BinConv2d(
        (bn): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=True, track_running_stats=True)
        (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))
        (relu): ReLU(inplace)
      )
      (12): BatchNorm2d(192, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
      (13): Conv2d(192, 10, kernel_size=(1, 1), stride=(1, 1))
      (14): ReLU(inplace)
      (15): AvgPool2d(kernel_size=8, stride=1, padding=0)
    )
  )
)
Train Epoch: 1 [0/50000 (0%)]	Loss: 2.303518	LR: 0.01
Train Epoch: 1 [12800/50000 (26%)]	Loss: 1.583676	LR: 0.01
Train Epoch: 1 [25600/50000 (51%)]	Loss: 1.252695	LR: 0.01
Train Epoch: 1 [38400/50000 (77%)]	Loss: 1.277936	LR: 0.01
==> Saving model ...

Test set: Average loss: 1.8486, Accuracy: 5068/10000 (50.68%)
Best Accuracy: 50.68%

Train Epoch: 2 [0/50000 (0%)]	Loss: 1.305717	LR: 0.01
Train Epoch: 2 [12800/50000 (26%)]	Loss: 1.235312	LR: 0.01
Train Epoch: 2 [25600/50000 (51%)]	Loss: 1.342946	LR: 0.01
Train Epoch: 2 [38400/50000 (77%)]	Loss: 1.303735	LR: 0.01
==> Saving model ...

Test set: Average loss: 1.5400, Accuracy: 5794/10000 (57.94%)
Best Accuracy: 57.94%

Train Epoch: 3 [0/50000 (0%)]	Loss: 1.030597	LR: 0.01
Train Epoch: 3 [12800/50000 (26%)]	Loss: 1.003013	LR: 0.01
Train Epoch: 3 [25600/50000 (51%)]	Loss: 0.989754	LR: 0.01
Train Epoch: 3 [38400/50000 (77%)]	Loss: 0.973633	LR: 0.01
==> Saving model ...

Test set: Average loss: 1.2972, Accuracy: 6417/10000 (64.17%)
Best Accuracy: 64.17%

Train Epoch: 4 [0/50000 (0%)]	Loss: 0.908937	LR: 0.01
Train Epoch: 4 [12800/50000 (26%)]	Loss: 0.852426	LR: 0.01
Train Epoch: 4 [25600/50000 (51%)]	Loss: 0.964585	LR: 0.01
Train Epoch: 4 [38400/50000 (77%)]	Loss: 0.857294	LR: 0.01
==> Saving model ...

Test set: Average loss: 1.2501, Accuracy: 6572/10000 (65.72%)
Best Accuracy: 65.72%

Train Epoch: 5 [0/50000 (0%)]	Loss: 0.903293	LR: 0.01
Train Epoch: 5 [12800/50000 (26%)]	Loss: 0.766061	LR: 0.01
Train Epoch: 5 [25600/50000 (51%)]	Loss: 0.913492	LR: 0.01
Train Epoch: 5 [38400/50000 (77%)]	Loss: 0.775575	LR: 0.01

Test set: Average loss: 1.5153, Accuracy: 5954/10000 (59.54%)
Best Accuracy: 65.72%

...

Train Epoch: 320 [0/50000 (0%)]	Loss: 0.458021	LR: 0.01
Train Epoch: 320 [12800/50000 (26%)]	Loss: 0.467194	LR: 0.01
Train Epoch: 320 [25600/50000 (51%)]	Loss: 0.353698	LR: 0.01
Train Epoch: 320[38400/50000 (77%)]	Loss: 0.517535	LR: 0.01

Test set: Average loss: 0.8367, Accuracy: 8612/10000 (86.12%)
Best Accuracy: 86.12%
  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: XNOR-Net is a neural network architecture that aims to reduce the computational cost of deep learning models by using binary weights and activations. PyTorch is a popular open-source deep learning framework that provides tools for building and training neural networks. To implement XNOR-Net in PyTorch, you can use binary convolutional layers and binary activation functions. PyTorch also provides functions for calculating the bitwise XNOR operation. Here's an example of a binary convolutional layer in PyTorch: ``` import torch import torch.nn as nn class BinaryConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(BinaryConv2d, self).__init__() self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) self.stride = stride self.padding = padding def forward(self, x): binary_weight = torch.sign(self.weight) return nn.functional.conv2d(x, binary_weight, stride=self.stride, padding=self.padding) ``` This code defines a binary convolutional layer that uses binary weights and the sign function to binarize the weights. The forward method applies the convolution using the binary weights. You can use this layer in a neural network to reduce the computational cost of the model. However, keep in mind that using binary weights and activations may reduce the accuracy of the model. ### 回答2: XNOR-Net是一种使用二值权重和二值激活函数的神经网络结构,具有高效、快速和低功耗的特点。该网络结构通过将权重和输入进行二值化,将乘法操作替换为位运算操作,从而降低了计算量和存储需求。 PyTorch是一个基于Python深度学习框架,提供了丰富的功能和灵活的工具,使得深度学习模型的构建和训练变得更加简单。PyTorch支持各种类型的神经网络模型,包括XNOR-Net。 在PyTorch中,我们可以使用二值权重和二值激活函数来构建XNOR-Net。二值权重可以使用torch.sign()函数来实现,将权重转换为-1和1的形式。二值激活函数则可以使用类似的方法,将激活值转换为0和1。 构建XNOR-Net的过程类似于构建传统的神经网络模型。我们可以使用PyTorch的nn.Module来定义模型的结构,使用nn.Linear来定义全连接层,使用nn.ReLU来定义激活函数等等。然后,我们可以使用PyTorch提供的优化器和损失函数来训练和评估我们的模型。 总之,XNOR-Net是一种高效、快速和低功耗的神经网络结构,而PyTorch是一个强大的深度学习框架,可以方便地构建和训练XNOR-Net模型。使用PyTorch可以帮助我们更好地理解和应用XNOR-Net这一新兴的神经网络结构。 ### 回答3: xnor-net是一种基于二进制神经网络(Binary Neural Network)的模型架构,其主要使用的是二值(或多值)权重和激活函数,以实现高效的计算和内存使用。而pytorch则是一种开源深度学习框架,提供了丰富的工具和函数,方便用户进行神经网络的搭建和训练。 xnor-net在pytorch中的实现主要涉及两个方面。首先,在网络的模型定义部分,可以使用pytorch提供的二值权重和激活函数对网络层进行定义。同时,还需要使用xnor运算对输入和权重进行二值化处理,以实现模型参数的二值化。其次,需要在训练过程中使用相应的二值化算法,来更新二值网络的参数。这一过程可以通过基于梯度的二值化方法或者近似二值化方法来实现。 通过xnor-net和pytorch的结合,可以有效地在内存和计算资源有限的情况下进行高效的神经网络训练和推理。其二值化的特性使得网络参数和数据的表示更加紧凑,从而降低了模型的存储需求和计算复杂度。此外,pytorch作为一个灵活和易于使用的深度学习框架,提供了丰富的工具和函数,方便用户对xnor-net模型的定义和训练进行个性化的调整和优化。 总之,xnor-net的pytorch实现为神经网络的高效训练和推理提供了一种创新的方案。通过合理的网络设计和训练方法的选择,可以在保持较高模型性能的同时,减少计算资源的消耗,从而为各种应用场景带来更好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值