同或门真值表_三输入异或门真值表计算详解

异或门的应用范围广,在实际应用中可以用来实现奇偶发生器或模2加法器,还可以用作加法器、异或密码、异或校检、异或门倍频器、可控反相器等等。虽然异或不是开关代数的基本运算之一,但是在实际运用中我们依然会相当普遍地使用到分立的异或门。因此,我们为了熟练了解、掌握异或门这一基本逻辑电路,对异或门电路进行了这次课程设计。

异或门的逻辑表达式:Y=ABC+ABC+ABC+ABC=A⊕B⊕C

进一步可得到一位比较器的真值表:

1586a6108f464d09f377c09ef8969e18.png

异或逻辑运算(半加运算)

异或运算通常用符号“♁”表示,其运算规则为:

0♁0=0 0同0异或,结果为0

0♁1=1 0同1异或,结果为1

1♁0=1 1同0异或,结果为1

1♁1=0 1同1异或,结果为0

即两个逻辑变量相异,输出才为1,给ABCD赋值,从左向右累计运算。得答案。

第一、相信你是知道两个命题变量的异或运算的规则的——只要你知道它的真值表就够了,其规律是:(两变量取值)相同则(结果为)假,不同则真;

第二、你应该知道两个命题变量的异或运算的结果也是一个命题变量,它可以参与下一步的逻辑运算;

第三、多个异或连续运算,就类似数学上的连加、连乘运算:将前两个数的运算结果,与第三个数继续运算;再将结果与第四个运算;再……其中的每一步都要按照相应运算的规则进行;

现在,你可以自己进行计算了。不过我曾经对多个变量的异或(和同或)运算的规律做过分析,现将结果告诉你,你可以自行验证:

1、多个命题(或命题变量)的“异或”运算:其结果依赖于参与运算的所有量中,取值为“真”的量的“个数”的“奇偶性”:

若含“奇数”个“真命题”,则结果为“真”;

若含“偶数”个“真命题”,则结果为“假”;(注:零个也是偶数个)

换句话说:命题表达式 A♁B♁C♁D 结果为“真”,当且仅当 A、B、C、D 中有奇数个(即 1 个或 3 个)变量的取值为“真”;而至于其中“假命题”的个数,则对结果“无任何影响”。关于这一点的证明,可以从下面两个恒等式中找到思路:

p ♁ 1 = 非p;——增加一个“真命题”参与运算,总会将“原命题”变成其“反命题”;

p ♁ 0 = p;——增加一个“假命题”参与运算,对“原命题”永远没影响;

2、多个命题(或命题变量)的“同或”运算:其结果依赖于参与运算的所有量中,取值为“假”的量的“个数”的“奇偶性”:

若含“奇数”个“假命题”,则结果为“假”;

若含“偶数”个“假命题”,则结果为“真”;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值