第七周【任务2】门控循环单元网络GRU的前向、后向传播

门控循环单元(GatedRecurrentUnit,GRU)网络是一种比 LSTM 网络更加简单的循环神经网络。

和 LSTM 不同,GRU 不引入额外的记忆单元,GRU 网络引入一个更新门(Up-date Gate)来控制当前状态需要从历史状态中保留多少信息(不经过非线性变换),以及需要从候选状态中接受多少新信息。同时还有一个重置门,控制从历史状态中有多少信息被写入到当前的候选状态中,重置门的值越小,历史状态的信息被写入的越少。

前向传播

下图是GRU的结构图。

在这里插入图片描述

从中可以看出,有两个门,一个非线性激活函数 tanh ⁡ \tanh tanh组成的隐藏层。

这里 z t z_t zt是更新门, r t r_{t} rt是重置门. z t ∈ [ 0 , 1 ] D , r t ∈ [ 0 , 1 ] D z_{t} \in[0,1]^{D}, \boldsymbol{r}_{t} \in[0,1]^{D} zt[0,1]D,rt[0,1]D. 首先对于更新门,有
z t ~ = x t W z x + h t − 1 W z h + b z z t = σ ⁡ ( z t ~ ) \begin{aligned} \widetilde{z_{t}}&=x_{t} W_{z x}+h_{t-1} W_{z h}+b_{z}\\ z_{t}&=\operatorname{\sigma}\left(\tilde{z_{t}}\right)\\ \end{aligned} zt zt=xtWzx+ht1Wzh+bz=σ(zt~)
然后对于重置门,有
r t ~ = x t W r x + h t − 1 W r h + b r r t = σ ⁡ ( r t ~ ) \begin{aligned} \widetilde{r_{t}}&=x_{t} W_{r x}+h_{t-1} W_{r h}+b_{r}\\ r_{t}&=\operatorname{\sigma}\left(\widetilde{r_{t}}\right)\\ \end{aligned} rt rt=xtWrx+ht1Wrh+br=σ(rt )
当输入状态 x t x_t xt进入后, 首先分别输出到两个门。在状态线中, x t x_{t} xt与权重矩阵 W s x W_{sx} Wsx相乘,重置门 r t r_{t} rt与上一时刻的隐藏状态 h t − 1 h_{t-1} ht1做向量元素相乘,然后向量加和成为隐藏层的输入向量
s t = x t W s x + ( r t ⊙ h t − 1 ) W s h + b s h ~ t = tanh ⁡ ( s t ) s_{t}=x_{t} W_{s x}+\left(r_{t} \odot h_{t-1}\right) W_{s h}+b_{s}\\ \tilde{h}_{t}=\tanh \left(s_{t}\right) st=xtWsx+(rtht1)Wsh+bsh~t=tanh(st)
经过激活函数隐藏层后,有了向量输出,也就是候选状态 。 h t ~ 。\widetilde{h_t} ht 这里 r t r_t rt控制候选状态 h t ~ \widetilde{h_t} ht 是否依赖于上一时刻的 h t − 1 h_{t-1} ht1。当 r t = 0 r_t=0 rt=0, 候选状态 h t ~ \tilde{h_t} ht~只与当前输入有关;当 r t = 1 r_t=1 rt=1时,候选状态与当前时刻输入 x t x_t xt以及上一时刻隐藏状态 h t − 1 h_{t-1} h

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值