【李航统计学习笔记】第二章:感知机

2.1 感知机模型

模型

感知机(Perceptron)针对的是二分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1、-1。

假设输入空间是 X ⊆ R n X \subseteq R^{n} XRn

输入变量是 x ∈ X x \in X xX

输出空间是 Y = { + 1 , − 1 } Y=\{+1,-1\} Y={+1,1}

输出变量是 y ∈ { + 1 , − 1 } y \in\{+1,-1\} y{+1,1}

由输入空间到输出空间满足下列函数:
f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=\operatorname{sign} (w \cdot x+b) f(x)=sign(wx+b)
其中 w w w是权重参数, b b b是偏置项, s i g n sign sign是符号函数,即
sign ⁡ ( x ) = { 1 , x ≥ 0 − 1 , x < 0 \operatorname{sign}(x)=\left\{\begin{aligned} 1, & x \geq 0 \\ -1, & x<0 \end{aligned}\right. sign(x)={1,1,x0x<0
感知机模型属于线性判别模型,旨在求出将训练数据进行线性划分的分离超平面

w ⋅ x + b w \cdot x+b wx+b​是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。其中w是超平面的法向量, b是超平面的截距, 特征空间也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空 间中可以找到样本所有的属性组合

感知机学习策略

函数间隔与几何间隔

空间中任意一个点 𝑥 0 𝑥_0 x0到超平面S的距离。

函数间隔:
∣ w ⋅ x 0 + b ∣ \left|w \cdot x_{0}+b\right| wx0+b
几何间隔:
1 ∥ w ∥ ∣ w ⋅ x 0 + b ∣ ∥ w ∥ 2 = ∑ i = 1 N w i 2 \frac{1}{\|w\|}\left|w \cdot x_{0}+b\right|\\ \|w\|_{2}=\sqrt{\sum_{i=1}^{N} w_{i}^{2}} w1wx0+bw2=i=1Nwi2
对于误分类数据而言,
− y i ( w ⋅ x i + b ) > 0 -y_{i}\left(w \cdot x_{i}+b\right)>0 yi(wxi+b)>0
误分类点 𝑥 𝑖 𝑥_𝑖 xi 到超平面S的距离为
− 1 ∥ w ∥ y i ( w ⋅ x i + b ) -\frac{1}{\|w\|} y_{i}\left(w \cdot x_{i}+b\right) w1yi(wxi+b)
因此,所有误分类点到超平面S的总距离为:
− 1 ∥ w ∥ ∑ x i ∈ M y i ( w ⋅ x i + b ) -\frac{1}{\|w\|} \sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) w1xiMyi(wxi+b)

损失函数:误分类点到超平面的总距离
L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) L(w,b)=xiMyi(wxi+b)
输入空间 R n R_n Rn中任意一点 x 0 x_0 x0到超平面 S S S的距离可表示为 ∣ w ⋅ x 0 + b ∣ ∥ w ∥ \dfrac{|w \cdot x_0+b|}{\|w\|} wwx0+b,其中 ∥ w ∥ \|w\| w表示为 w w w L 2 L2 L2范数。其次,对于误分类点 ( x i , y i ) (x_i, y_i) (xi,yi)来说, − y i ( w ⋅ x i + b ) > 0 -y_i(w\cdot x_i+b)>0 yi(wxi+b)>0成立. 当 w ⋅ x i + b > 0 w \cdot x_{i}+b>0 wxi+b>0时, y i = − 1 y_i=-1 yi=1。而当 w ⋅ x i + b < 0 w\cdot x_i+b<0 wxi+b<0时, y i = + 1 y_i=+1 yi=+1。因此而误分类点 x i x_i xi到超平面 S S S的距离是
− 1 ∥ w ∥ y i ( w ⋅ x i + b ) -\frac{1}{\|w\|} y_{i}\left(w \cdot x_{i}+b\right) w1yi(wxi+b)
假设超平面 S S S的五分类点集合为 M M M,那么所有误分类点到超平面 S S S的总距离为
− 1 ∥ w ∥ ∑ x i ∈ M y i ( w ⋅ x i + b ) -\frac{1}{\|w\|} \sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) w1xiMyi(wxi+b)
忽略 ∥ w ∥ \|w\| w,就得到感知机学习的损失函数
L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) L(w,b)=xiMyi(wxi+b)
其中 M M M为误分类点的集合

感知机学习算法

算法2.1(随机梯度下降法)

输入:训练数据集 T = [ ( x 1 , y 1 ) , … , ( x N , y N ) ] T=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right] T=[(x1,y1),,(xN,yN)]

  1. 选取超平面初始值 w 0 , b 0 w_0,b_0 w0,b0

  2. 在训练集中选取数据 ( x i , y i ) (x_i,y_i) (xi,yi) ,如果 y i ( w ⋅ x i + b ) ≤ 0 y_{i}\left(w \cdot x_{i}+b\right) \leq 0 yi(wxi+b)0,采用梯度下降法极小化目标函数
    L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) ∇ w L ( w , b ) = − ∑ x i ∈ M y i x i ∇ b L ( w , b ) = − ∑ x i ∈ M y i \begin{aligned} &L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) \\ &\nabla_{w} L(w, b)=-\sum_{x_{i} \in M} y_{i} x_{i} \\ &\nabla_{b} L(w, b)=-\sum_{x_{i} \in M} y_{i} \end{aligned} L(w,b)=xiMyi(wxi+b)wL(w,b)=xiMyixibL(w,b)=xiMyi

  3. 更新 w , b w, b w,b

w ← w + η y i x i b ← b + η y i \begin{aligned} &w \leftarrow w+\eta y_{i} x_{i} \\ &b \leftarrow b+\eta y_{i} \end{aligned} ww+ηyixibb+ηyi

  1. 转至2, 直到训练集中没有误分类点。

输出: w , b w,b w,b

2.2 对偶形式

感知机模型对偶形式
f ( x ) = sign ⁡ ( ∑ i = 1 N α i y i x i ⋅ x + b ) , α = ( α 1 , α 2 , ⋯   , α N ) T f(x)=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \cdot x+b\right), \alpha = (\alpha_1, \alpha_2, \cdots, \alpha_N)^T f(x)=sign(i=1Nαiyixix+b),α=(α1,α2,,αN)T

算法2.2原始形式

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ Y = { − 1 , + 1 } , i = 1 , 2 , … , N x_{i} \in X=R^{n}, y_{i} \in Y=\{-1,+1\}, i=1,2, \ldots, N xiX=Rn,yiY={1,+1},i=1,2,,N; 学习率 η ( 0 < η ≤ 1 ) \eta(0<\eta \leq 1) η(0<η1)

输出: w w w, b b b; 感知机模型 f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=\operatorname{sign}(w \cdot x+b) f(x)=sign(wx+b)

  1. 选取初始值 w 0 , b 0 w_{0}, b_{0} w0,b0
  2. 在训练集中选取数据 ( x i , y i ) (x_i,y_i) (xi,yi)
  3. 如果 y i ( w ⋅ x i + b ) ≤ 0 y_{i}\left(w \cdot x_{i}+b\right) \leq 0 yi(wxi+b)0

w ← w + η y i x i b ← b + η y i \begin{gathered} w \leftarrow w+\eta y_{i} x_{i} \\ b \leftarrow b+\eta y_{i} \end{gathered} ww+ηyixibb+ηyi

  1. 转至2, 直至训练集中没有误分类点

思考:

  1. 每次参数的更新公式是:

w ← w + η y i x i b ← b + η y i \begin{gathered} w \leftarrow w+\eta y_{i} x_{i} \\ b \leftarrow b+\eta y_{i} \end{gathered} ww+ηyixibb+ηyi

  1. 每次按照上式更新,假设修改n次,那么对于样本点 ( x i , y i ) (x_i,y_i) (xi,yi)而言, w w w b b b的增量为 α i y i x i \alpha_{i} y_{i} x_{i} αiyixi α i y i \alpha_{i} y_{i} αiyi,其中 α i = n i η \alpha_{i}=n_{i} \eta αi=niη

w = ∑ i = 1 N α i y i x i b = ∑ i = 1 N α i y i \begin{aligned} &w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \\ &b=\sum_{i=1}^{N} \alpha_{i} y_{i} \end{aligned} w=i=1Nαiyixib=i=1Nαiyi

  1. 原始的感知机形式为:

f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=\operatorname{sign}(w \cdot x+b) f(x)=sign(wx+b)

  1. 将目前的 w w w b b b代入原始感知机形式中:

f ( x ) = sign ⁡ ( ∑ i = 1 N α i y i x i ⋅ x + b ) f(x)=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \cdot x+b\right) f(x)=sign(i=1Nαiyixix+b)

感知机的对偶形式

输入:线性可分的数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中 x i ∈ R n , y i ∈ { − 1 , + 1 } , i = 1 , 2 , … , N x_{i} \in R^{n}, y_{i} \in\{-1,+1\}, i=1,2, \ldots, N xiRn,yi{1,+1},i=1,2,,N, 学习率 η ( 0 < η ≤ 1 ) \eta(0<\eta \leq 1) η(0<η1);

输出: α , b \alpha, b α,b; 感知机模型 f ( x ) = sign ⁡ ( ∑ j = 1 N α j y j x j ⋅ x + b ) f(x)=\operatorname{sign}\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \cdot x+b\right) f(x)=sign(j=1Nαjyjxjx+b), 其中 α = ( α 1 , α 2 , … , α N ) T \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)^{T} α=(α1,α2,,αN)T.

  1. α ← 0 , b ← 0 \alpha \leftarrow 0, b \leftarrow 0 α0,b0
  2. 在训练集中选取数据 ( x i , y i ) (x_i,y_i) (xi,yi)
  3. 如果 y i ( ∑ j = 1 N α j y j x j ⋅ x i + b ) ≤ 0 y_{i}\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \cdot x_{i}+b\right) \leq 0 yi(j=1Nαjyjxjxi+b)0

α 1 ← α 1 + η b ← b + η y i \begin{aligned} &\alpha_{1} \leftarrow \alpha_{1}+\eta \\ &b \leftarrow b+\eta y_{i} \end{aligned} α1α1+ηbb+ηyi

  1. 转至第二步,直至训练集中没有误分类点

对偶形式中训练实例仅以内积的形式出现。为了方便,可以预先将训练集中实例间的内积计算出来并以矩阵 的形式储存,这个矩阵就是所谓的Gram矩阵:
G = [ x i ⋅ x j ] N × N G=\left[x_{i} \cdot x_{j}\right]_{N \times N} G=[xixj]N×N

2.3 算法收敛性

需要证明,感知机学习算法的原始形式在线性可分数据集上收敛。

为了便于推导,将偏置b并入权重向量w,计作 w ~ = ( w T , b ) T \widetilde{w}=\left(w^{T}, b\right)^{T} w =(wT,b)T,同样也将输入向量加以扩充,加进常数1,记作 x ~ = ( x T , 1 ) T \tilde{x}=\left(x^{T}, 1\right)^{T} x~=(xT,1)T,显然,经过处理后, w ~ ⋅ x ~ = w ⋅ x + b \widetilde{w} \cdot \tilde{x}=w \cdot x+b w x~=wx+b

设训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}是线性可分的,其中 x i ∈ X = R n , y i ∈ Y = { − 1 , + 1 } , i = 1 , 2 , … , N x_{i} \in X=R^{n}, y_{i} \in Y=\{-1,+1\}, i=1,2, \ldots, N xiX=Rn,yiY={1,+1},i=1,2,,N, 则

  1. 存在瞒住条件 ∥ w ^ opt  ∥ = 1 \left\|\widehat{\mathbf{w}}_{\text {opt }}\right\|=1 w opt =1的超平面 w ^ opt  ⋅ w ^ = w o p t ⋅ x + b o p t = 0 \widehat{\mathrm{w}}_{\text {opt }} \cdot \widehat{\mathrm{w}}=w_{o p t} \cdot x+b_{o p t}=0 w opt w =woptx+bopt=0将训练数据集完全正确分开;且存在 γ > 0 \gamma>0 γ>0,对所有 i = 1 , 2 , … , N i=1,2, \ldots, N i=1,2,,N:

y i ( w ^ o p t ⋅ x i ^ ) = y i ( w o p t ⋅ x i + b opt  ) ≥ γ y_{i}\left(\widehat{\mathrm{w}}_{\mathrm{opt}} \cdot \widehat{x_{i}}\right)=y_{i}\left(w_{\mathrm{opt}} \cdot x_{i}+b_{\text {opt }}\right) \geq \gamma yi(w optxi )=yi(woptxi+bopt )γ

  1. R = max ⁡ 1 ≤ i ≤ N ∥ x ^ i ∥ R=\max _{1 \leq i \leq N}\left\|\hat{x}_{i}\right\| R=max1iNx^i, 则感知机算法在训练数据集上的误分类次数k满足不等式:

k ≤ ( R γ ) 2 k \leq\left(\frac{R}{\gamma}\right)^{2} k(γR)2

证明(1)

由于训练数据集是线性可分的,按照定义2.2,存在超平面可将训练数据集完全正确分开,取此超平面为 w ^ opt  ⋅ x ^ = w o p t ⋅ x + b o p t = 0 \widehat{\mathrm{w}}_{\text {opt }} \cdot \hat{x}=w_{o p t} \cdot x+b_{o p t}=0 w opt x^=woptx+bopt=0, 使得 ∥ w ^ opt  ∥ = 1 \left\|\widehat{\mathrm{w}}_{\text {opt }}\right\|=1 w opt =1。由于对有限的 i = 1 , 2 , … , N i=1,2, \ldots, N i=1,2,,N, 均有
y i ( w ^ o p t ⋅ x ^ i ) = y i ( w o p t ⋅ x i + b o p t ) > 0 y_{i}\left(\widehat{\mathrm{w}}_{\mathrm{opt}} \cdot \widehat{x}_{i}\right)=y_{i}\left(w_{\mathrm{opt}} \cdot x_{i}+b_{o p t}\right)>0 yi(w optx i)=yi(woptxi+bopt)>0
所以存在
γ = min ⁡ { y i ( w o p t ⋅ x i + b o p t ) \gamma=\min \left\{y_{i}\left(w_{\mathrm{opt}} \cdot x_{i}+b_{o p t}\right)\right. γ=min{yi(woptxi+bopt)
使得
y i ( w ^ o p t ⋅ x ^ i ) = y i ( w o p t ⋅ x i + b o p t ) ≥ γ y_{i}\left(\widehat{\mathrm{w}}_{\mathrm{opt}} \cdot \widehat{x}_{i}\right)=y_{i}\left(w_{\mathrm{opt}} \cdot x_{i}+b_{\mathrm{opt}}\right) \geq \gamma yi(w optx i)=yi(woptxi+bopt)γ
证明(2)

感知机算法从 w ^ = 0 \widehat{\mathrm{w}}=0 w =0开始,如果实例被误分类,则更新权重,令 w ^ k − 1 \widehat{w}_{k-1} w k1是第k个误分类 实例之前的扩充权重向量,即
w ^ k − 1 = ( w k − 1 T , b k − 1 ) T \widehat{\mathrm{w}}_{k-1}=\left(w_{k-1}^{T}, b_{k-1}\right)^{T} w k1=(wk1T,bk1)T
则第 k k k个误分类实例的条件是
y i ( w ^ k − 1 ⋅ x ^ i ) = y i ( w k − 1 ⋅ x i + b k − 1 ) ≤ 0 y_{i}\left(\widehat{w}_{k-1} \cdot \widehat{x}_{i}\right)=y_{i}\left(w_{k-1} \cdot x_{i}+b_{k-1}\right) \leq 0 yi(w k1x i)=yi(wk1xi+bk1)0
( x i , y i ) \left(x_{i}, y_{i}\right) (xi,yi)是被 w ^ k − 1 = ( w k − 1 T , b k − 1 ) T \widehat{w}_{k-1}=\left(w_{k-1}^{T}, b_{k-1}\right)^{T} w k1=(wk1T,bk1)T误分类的数据,则 w w w b b b的更新是
w k ← w k − 1 + η y i x i b k ← b k − 1 + η y i \begin{gathered} w_{k} \leftarrow w_{k-1}+\eta y_{i} x_{i} \\ b_{k} \leftarrow b_{k-1}+\eta y_{i} \end{gathered} wkwk1+ηyixibkbk1+ηyi

w ^ k = w ^ k − 1 + η y i x i ^ \widehat{\mathrm{w}}_{k}=\widehat{\mathrm{w}}_{k-1}+\eta y_{i} \widehat{x_{i}} w k=w k1+ηyixi
下面推导两个不等式.首先第一个:
W ^ k ⋅ W ^ o p t ≥ k η γ \widehat{\mathbf{W}}_{k} \cdot \widehat{\mathbf{W}}_{o p t} \geq k \eta \gamma W kW optkηγ

由书中式(2.11)(这里的式(30))和式(2.8)(这里的式(22))可得
w ^ k ⋅ w ^ o p t = w ^ k − 1 ⋅ w ^ o p t + η y i w ^ o p t ⋅ x i ^ ≥ w ^ k − 1 ⋅ w ^ o p t + η γ \begin{aligned} \widehat{\mathrm{w}}_{k} \cdot \widehat{\mathrm{w}}_{o p t} &=\widehat{\mathrm{w}}_{k-1} \cdot \widehat{\mathrm{w}}_{o p t}+\eta y_{i} \widehat{\mathrm{w}}_{o p t} \cdot \widehat{x_{i}} \\ & \geq \widehat{\mathrm{w}}_{k-1} \cdot \widehat{\mathrm{w}}_{o p t}+\eta \gamma \end{aligned} w kw opt=w k1w opt+ηyiw optxi w k1w opt+ηγ
由此递推得到不等式(书中式(2.12))
w ^ k ⋅ w ^ o p t ≥ w ^ k − 1 , w ^ o p t + η γ ≥ w ^ k − 2 ⋅ w ^ o p t + 2 η γ ≥ ⋯ ≥ k η γ \widehat{\mathrm{w}}_{k} \cdot \widehat{\mathrm{w}}_{o p t} \geq \widehat{\mathrm{w}}_{k-1}, \widehat{\mathrm{w}}_{o p t}+\eta \gamma \geq \widehat{\mathrm{w}}_{k-2} \cdot \widehat{\mathrm{w}}_{o p t}+2 \eta \gamma \geq \cdots \geq k \eta \gamma w kw optw k1,w opt+ηγw k2w opt+2ηγkηγ

∥ w ^ k ∥ 2 ≤ k η 2 R 2 \left\|\widehat{\mathrm{w}}_{k}\right\|^{2} \leq k \eta^{2} R^{2} w k2kη2R2

由书中式(2.11)(这里的式(30))及式(2.10)(这里的(28))得
∥ w ^ k ∥ 2 = ∥ w ^ k − 1 ∥ 2 + 2 η y i w ^ k − 1 ⋅ x ^ i + η 2 ∥ x ^ i ∥ 2 ≤ ∥ w ^ k − 1 ∥ 2 + η 2 ∥ x ^ i ∥ 2 ≤ ∥ w ^ k − 1 ∥ 2 + η 2 R 2 ≤ ∥ w ^ k − 2 ∥ 2 + 2 η 2 R 2 ≤ ⋯ ≤ k η 2 R 2 \begin{gathered} \left\|\widehat{\mathrm{w}}_{k}\right\|^{2}=\left\|\widehat{\mathrm{w}}_{k-1}\right\|^{2}+2 \eta y_{i} \widehat{\mathrm{w}}_{k-1} \cdot \hat{x}_{i}+\eta^{2}\left\|\hat{x}_{i}\right\|^{2} \\ \leq\left\|\widehat{\mathrm{w}}_{k-1}\right\|^{2}+\eta^{2}\left\|\hat{x}_{i}\right\|^{2} \\ \leq\left\|\widehat{\mathrm{w}}_{k-1}\right\|^{2}+\eta^{2} R^{2} \\ \leq\left\|\widehat{\mathrm{w}}_{k-2}\right\|^{2}+2 \eta^{2} R^{2} \leq \cdots \\ \leq k \eta^{2} R^{2} \end{gathered} w k2=w k12+2ηyiw k1x^i+η2x^i2w k12+η2x^i2w k12+η2R2w k22+2η2R2kη2R2
结合上面的不等式(33)和(34)可得
w ^ k ⋅ w ^ o p t ≥ k η γ ∥ w ^ k ∥ 2 ≤ k η 2 R 2 k η γ ≤ w ^ k ⋅ w ^ o p t ≤ ∥ w ^ k ∥ ∥ w ^ o p t ∥ ≤ k η R k 2 η 2 ≤ k R 2 k ≤ ( R γ ) 2 \begin{gathered} \widehat{\mathrm{w}}_{k} \cdot \widehat{\mathrm{w}}_{o p t} \geq k \eta \gamma \\ \left\|\widehat{\mathrm{w}}_{k}\right\|^{2} \leq k \eta^{2} R^{2} \\ k \eta \gamma \leq \widehat{\mathrm{w}}_{k} \cdot \widehat{\mathrm{w}}_{o p t} \leq\left\|\widehat{\mathrm{w}}_{k}\right\|\left\|\widehat{\mathrm{w}}_{o p t}\right\| \leq \sqrt{k} \eta R \\ k^{2} \eta^{2} \leq k R^{2} \\ k \leq\left(\frac{R}{\gamma}\right)^{2} \end{gathered} w kw optkηγw k2kη2R2kηγw kw optw kw optk ηRk2η2kR2k(γR)2

总结

  1. 通过证明感知机误分类次数是有上界的,说明通过有限次搜索可以找到将数据集完全正确分开的分离超平面
  2. 当数据集线性不可分时,感知机学习算法不收敛, 会发生振荡。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值