1 李航《统计机器学习》之感知机模型

本文深入解析了感知机模型,作为二分类的线性判别模型,它通过定义特征空间中的分割超平面进行分类。学习策略中,我们探讨了其基于距离的损失函数和非梯度优化方法。初始值选取、随机选取数据及迭代更新规则构成了关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1  感知机模型

        类别: 二分类线性分类模型、判别模型

        模型:f(x) = sign(w*x+b),可以理解为特征空间的一个分割超平面,权重w可以理解为分割超平面的法向量偏置b可以理解为超平面的截距

 

        其中,  sign(x) = \left\{\begin{matrix} +1,x\geq 0\\ -1,x< 0 \end{matrix}\right.,感知机模型的假设空间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值