概率论的两个重要定理: 大数定理 和 中心极限定理 (不废话版)

大数定理

弱大数定理(辛钦定理)

X 1 , X 2 … X_1, X_2 \dots X1,X2相互独立, 服从同一分布的随机变量序列, 数学期望为 E ( X k ) = μ ( k = 1 , 2 , ⋯   ) E(X_k)=\mu (k=1,2,\cdots) E(Xk)=μ(k=1,2,), 则对于任意 ϵ > 0 \epsilon>0 ϵ>0:
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{1}{n} \sum_{k=1}^{n} X_{k}-\mu\right|<\varepsilon\right\}=1 nlimP{n1k=1nXkμ<ε}=1
中文版本:当选取样本数量足够多时, 样本的均值无限逼近于分布的均值

中心极限定理

同分布的中心极限

X 1 , X 2 … X_1, X_2 \dots X1,X2相互独立, 服从同一分布的随机变量序列 E ( X k ) = μ , D ( X k ) = σ 2 > 0 E\left(X_{k}\right)=\mu, D\left(X_{k}\right)=\sigma^{2}>0 E(Xk)=μ,D(Xk)=σ2>0, 有:
1 n ∑ k = 1 n X k ∼ N ( μ , σ 2 / n ) \frac{1}{n}\sum_{k=1}^{n} X_{k}\sim \mathcal{N}(\mu, \sigma^2/n) n1k=1nXkN(μ,σ2/n)
中文版本: 当样本数量足够多时, 样本均值服从均值为分布均值, 方差为分布方差的 n n n分之一的高斯分布

不同分布的中心极限(李雅普诺夫定理)

X 1 , X 2 … X_1, X_2 \dots X1,X2相互独立, 不一定服从同一分布, 有:
E ( X k ) = μ k , D ( X k ) = σ k 2 > 0 , k = 1 , 2 , ⋯   , E\left(X_{k}\right)=\mu_{k}, \quad D\left(X_{k}\right)=\sigma_{k}^{2}>0, k=1,2, \cdots, E(Xk)=μk,D(Xk)=σk2>0,k=1,2,,
记: B n 2 = ∑ k = 1 n σ k 2 B_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2} Bn2=k=1nσk2
有:
∑ k = 1 n X k ∼ N ( Σ k = 1 n μ k , B n 2 ) \sum_{k=1}^{n} X_{k}\sim \mathcal{N}(\Sigma_{k=1}^n\mu_k, B_{n}^{2}) k=1nXkN(Σk=1nμk,Bn2)
也即:
1 n ∑ k = 1 n X k ∼ N ( 1 n Σ k = 1 n μ k , 1 n 2 B n 2 ) \frac{1}{n}\sum_{k=1}^{n} X_{k}\sim \mathcal{N}(\frac{1}{n}\Sigma_{k=1}^n\mu_k, \frac{1}{n^2}B_{n}^{2}) n1k=1nXkN(n1Σk=1nμk,n21Bn2)
中文版本:当样本数量足够多时, 样本均值服从高斯分布, 其均值为样本的均值的均值。 方差为样本方差的均值。

切比雪夫不等式与大数定理的证明

E ( 1 n ∑ k = 1 n X k ) = 1 n ∑ k = 1 n E ( X k ) = 1 n ( n μ ) = μ , E\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)=\frac{1}{n} \sum_{k=1}^{n} E\left(X_{k}\right)=\frac{1}{n}(n \mu)=\mu, E(n1k=1nXk)=n1k=1nE(Xk)=n1(nμ)=μ,
D ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n D ( X k ) = 1 n 2 ( n σ 2 ) = σ 2 n D\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)=\frac{1}{n^{2}} \sum_{k=1}^{n} D\left(X_{k}\right)=\frac{1}{n^{2}}\left(n \sigma^{2}\right)=\frac{\sigma^{2}}{n} D(n1k=1nXk)=n21k=1nD(Xk)=n21(nσ2)=nσ2
由切比雪夫不等式:
1 ⩾ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } ⩾ 1 − σ 2 / n ε 2 1 \geqslant P\left\{\left|\frac{1}{n} \sum_{k=1}^{n} X_{k}-\mu\right|<\varepsilon\right\} \geqslant 1-\frac{\sigma^{2} / n}{\varepsilon^{2}} 1P{n1k=1nXkμ<ε}1ε2σ2/n
切比雪夫不等式中文版本:随机变量远离均值的概率正比于方差。
n → ∞ n\rightarrow\infty n, :
lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim _{n \rightarrow \infty} P\left\{\left|\frac{1}{n} \sum_{k=1}^{n} X_{k}-\mu\right|<\varepsilon\right\}=1 nlimP{n1k=1nXkμ<ε}=1

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值