-图的遍历-

图的遍历

图的遍历即总图的某一顶点出发,沿着图的边,将图的所有顶点依次访问依次且只访问一次。

树是一种特殊的图(极小连通子图),所以树的遍历也可以看作一种特殊的图的遍历。

图的遍历算法是求解图的连通性,拓扑排序和求关键路径等算法的基础

树的遍历沿边访问不会访问重复的节点(访问过的节点要从栈中读取),而图沿边访问是可能重复访问节点,因此要设置一个辅助数组visited[MaxVertexNum]来标记顶点是否被访问过

对于图的遍历算法,下述过程是公共的,这是由于依赖于路径的单次遍历只能在连通区域循环访问

bool visited[MaxVertexNum];
void Traverse(Graph G){
	//初始化已访问标识
	for( v = 0; v < G.vexnum; ++v)
		visited[v] = FALSE;
	//对某个节点所在的极大联通图用某种遍历方法遍历		
	for( v = 0; v < G.vexnum; ++v)
		if(!visited[v])
			TraverseMethod(G,v);
}

广度优先搜索

BFS(Breadth-First-Search)

BFS算法

bool visited[MaxVertexNum];

void BFSTraverse(Graph G){
	for( i = 0;i < G.vexnum; i++)
		visited[i] = false;			//访问标记数组初始化
	InitQueue(Q);
	for( i = 0; i < G.vernum; i++){
		if(!visited[i])
			BFS(G,i);				//遍历顶点i所在的极大连通分量			
	}
}

//相当于将根节点为v的树层次遍历,且在遍历的过程中添加对访问标记的判断或修改
void BFS(Graph G,int v){
	visit(v);
	visited[v] = true;
	//类似于树的层次遍历,要借助一个辅助队列
	Enqueue(Q,v);
	while(!isEmpty(Q)){
		DeQueue(Q,v);
		for(w = FirstNeighbor(G,v);w >= 0; w = NextNeighbor(G,v,w)){
			if(!visist[w]){
				visit(w);
				visited[w] = true;
				Enqueue(Q,w);
			}
		}
	}
}

图的广度优先遍历是树的层次遍历算法的扩展

BFS算法的性能分析

无论是邻接表还是邻接矩阵的存储方式,BFS算法都需要借助一个辅助队列Q,n个顶点均需入队一次,在最坏的情况,时间复杂度为O(|V|)。
采用邻接表存储方式时,每个顶点均需搜索一次(或如对一次),故时间复杂度为O(|V|),在搜索任意顶点的邻接表时,每条边至少访问一次,故时间复杂度为O(|E|),算法总的时间复杂度为O(|V| + |E|)。采用邻接矩阵存储方式时,查找每个顶点的邻接点所需要的时间为O(|V|),故算法总的时间复杂度为O(|V|^2)

BFS算法求解单源最短路径问题

由于广度优先遍历是由近及远的,而且每次BFS遍历都是在一个最大连通分量上的遍历,因此可以在BFS算法的循环中计算路径长度

void BFS_MIN_Distance(Graph G,int u){
	//d[i]记录从u到i节点的最短路径
	for(i = 0;i < G.vernum;i++)
		d[i] = -1;//初始化路径长度
		visited[u] = ture; d[u] = 0;
		EnQueue(Q,u);
		while(!isEmpty(Q)){
			DeQueue(Q,u);
			for(w = FirstNeighbor(G,u);w >= 0;w = NextNeighbor(G,u,w)){
				if(!visited[w]){
					visited[w] = ture;
					d[w] = d[u] + 1;//注意u是动态的,每次的u都是上个循环访问的访问标识为否的节点
					EnQueue(Q,w);
				}
			}
		}
}

广度优先生成树

生成方法为层次遍历访问节点时确定书的节点
在广度优先遍历的过程中,我们可以得到一颗遍历树,称为广度优先生成树,一个顶的邻接矩阵存储表示唯一,其广度优先生成树也是唯一的,但是邻接矩阵表示不唯一,其广度优先生成树也是不唯一的。

深度优先搜索

DFS算法

bool visited[[MaxVertexNum];
void DFSTraverse(Graph G){
	for(v = 0; v < G.verum; v ++)
		visited[v] == FALSE;
	for(v = 0; v < G.vernum; v ++)
		DFS(G,v);	
}
//类似于树的先序遍历
DFS(Graph G,int v){
	//访问顶点v
	visit(v);
	//访问后修改已访问标识
	visited[v] = TRUE;
	//递归的DFS访问(先序遍历);访问前检测已访问标识
	for( w = FirstNeibor(G,v); w != 0; w = NextNeibor(G,v,w)
		if(!visited[w]){
			DFS(G,w);
		}
}

DFS算法的性能分析

由于用到递归算法要借助工作栈,所以空间复杂度为O(|V|)。
算法的时间复杂度依赖于FirstNeibor和NextNeibor两个函数,根据不同的存储结构,这两个函数有不同的时间复杂度。
在邻接矩阵中,FirstNeibor和NextNeibor的时间复杂度均为O(|V|),即遍历第v行所需要的时间,故总的时间复杂度为O(|V|^2);在邻接表中,访问所有FirstNeibor的时间代价为|V|,访问所有NextNeibor的时间代价为|E|(所有循环累计),所以总的时间复杂度为O(|V|+|E|)

深度优先的生成树和生成森林

生成方法为先序遍历访问时确定一个节点
连通图可以生成树 非连通图生成森林(每个极大连通图生成一棵树)
基于邻接矩阵存储的图可以唯一确定一颗深度优先生成树
基于邻接表存储的图不可以唯一确定一颗深度优先生成树

图的遍历和连通性

在Traverse函数的第二个循环中,

	num = 0;
	for( i = 0; i < G.vernum; i++){
		if(!visited[i])
			num ++;
			TraverseMethod(G,i);				//遍历顶点i所在的极大连通分量			
	}

即可得到连通分量数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值