Problem: Second Minimum Time to Reach Destination
Description
A city is represented as a bi-directional connected graph with ( n ) vertices where each vertex is labeled from 1 to ( n ) (inclusive). The edges in the graph are represented as a 2D integer array edges
, where each edges[i] = [ui, vi]
denotes a bi-directional edge between vertex ( ui ) and vertex ( vi ). Every vertex pair is connected by at most one edge, and no vertex has an edge to itself. The time taken to traverse any edge is time
minutes.
Each vertex has a traffic signal which changes its color from green to red and vice versa every change
minutes. All signals change at the same time. You can enter a vertex at any time, but can leave a vertex only when the signal is green. You cannot wait at a vertex if the signal is green.
The second minimum value is defined as the smallest value strictly larger than the minimum value.
For example, the second minimum value of [2, 3, 4]
is 3, and the second minimum value of [2, 2, 4]
is 4.
Given n
, edges
, time
, and change
, return the second minimum time it will take to go from vertex 1 to vertex ( n ).
Example
Input:
n = 5
edges = [[1, 2], [1, 3], [1, 4], [3, 4], [4, 5]]
time = 3
change = 5
Output:
13
Explanation:
- Minimum time path: 1 -> 4 -> 5 with time = 6 minutes.
- Second minimum time path: 1 -> 3 -> 4 -> 5 with time = 13 minutes.
Solution
from collections import deque
from typing import List
class Solution:
def secondMinimum(self, n: int, edges: List[List[int]], time: int, change: int) -> int:
# Create the graph as an adjacency list
g = [[] for _ in range(n + 1)]
for u, v in edges:
g[u].append(v)
g[v].append(u)
# Initialize the queue for BFS
q = deque([(1, 1)]) # (node, frequency)
# Initialize distances for the shortest and second shortest times
dist1 = [-1] * (n + 1)
dist2 = [-1] * (n + 1)
dist1[1] = 0
# Perform BFS
while q:
x, freq = q.popleft()
t = dist1[x] if freq == 1 else dist2[x]
# Adjust the time based on the traffic signal
if (t // change) % 2:
t = change * (t // change + 1) + time
else:
t += time
# Explore neighbors
for y in g[x]:
if dist1[y] == -1:
dist1[y] = t
q.append((y, 1))
elif dist2[y] == -1 and dist1[y] != t:
if y == n:
return t
dist2[y] = t
q.append((y, 2))
return 0
Questions and Answers
1. The Method of Constructing a Graph in This Code
The graph is constructed using an adjacency list. The list g
is initialized with empty lists for each vertex. Then, for each edge [u, v]
in edges
, vertex v
is added to the list of neighbors for vertex u
, and vertex u
is added to the list of neighbors for vertex v
.
g = [[] for _ in range(n + 1)]
for u, v in edges:
g[u].append(v)
g[v].append(u)
2. How to Use a Queue in deque
A deque
(double-ended queue) is used to perform BFS. Nodes are appended to the right end of the deque and popped from the left end. This ensures that nodes are processed in the order they are added, maintaining the BFS order.
q = deque([(1, 1)]) # (node, frequency)
...
q.append((y, freq))
...
x, freq = q.popleft()
3. The Usage of freq
in This Code
The freq
variable indicates whether the current node’s time is being considered for the first shortest time (freq=1
) or the second shortest time (freq=2
). This distinction helps in tracking and updating the shortest and second shortest times separately.
4. The Mathematical Equation of Adjusting the Time Based on the Traffic Signal
The time is adjusted based on the traffic signal state. If the current time (t
) divided by the signal change interval (change
) is odd ((t // change) % 2 == 1
), it means we arrive during a red signal, and we need to wait until the next green signal. The adjusted time is calculated as follows:
- If arriving during a red signal:
t = ( ( t change + 1 ) × change ) + time t = \left( \left( \frac{t}{\text{change}} + 1 \right) \times \text{change} \right) + \text{time} t=((changet+1)×change)+time - Otherwise, add the travel time directly:
t + = time t += \text{time} t+=time
if (t // change) % 2:
t = change * (t // change + 1) + time
else:
t += time