抖音点选验证码识别(亲测可用)

抖音中文点选验证码,返回一个坐标,特别说明,这是抖音验证码不是其他,b站其他的等都非常简单,以下为部分代码,提供大家思路,当然做到准确率99.9%,我还是花了很多的精力,有问题欢迎一起讨论。

  1. 数据收集:收集大量的带有抖音中文点选验证码的样本数据,包括验证码图片以及其对应的正确答案。

  2. 预处理:对验证码图片进行预处理,包括去除噪声、调整大小、增强对比度等操作,以便于后续的特征提取和识别。

from PIL import Image
import numpy as np
 
# 图片预处理函数
def preprocess_image(image_path, target_size=(100, 100)):
    image = Image.open(image_path)
    # 调整图片大小
    image = image.resize(target_size)
    # 转换为灰度图像
    image = image.convert('L')
    # 将图像转换为数组
    image_array = np.array(image)
    return image_array

3. 特征提取:从预处理后的验证码图片中提取特征,例如颜色直方图、形状特征、纹理特征等。

from skimage.feature import hog
 
# HOG特征提取函数
def extract_hog_features(image_array):
    features, hog_image = hog(image_array, orientations=9, pixels_per_cell=(8, 8),
                              cells_per_block=(2, 2), visualize=True, block_norm='L2-Hys')
    return features

4. 训练模型:使用机器学习或深度学习算法,如支持向量机(SVM)、卷积神经网络(CNN)等,将提取的特征与其对应的正确答案进行训练,以建立识别模型。

5. 评估和调优:对模型进行评估,查看其在测试集上的准确率和召回率等指标,根据需要进行调优,如调整模型参数、增加训练样本等。

# 模型评估函数
def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    print(classification_report(y_test, y_pred))

6. 模型部署与应用

# 加载测试集数据
X_test, y_test = load_data(test_data_dir)
 
# 对测试集进行预处理和特征提取
X_test_preprocessed = [preprocess_image(image_path) for image_path in X_test]
X_test_features = [extract_hog_features(image_array) for image_array in X_test_preprocessed]
 
# 加载并训练模型
model = train_model(X_train_features, y_train)
 
# 评估模型
evaluate_model(model, X_test_features, y_test)

7. 欢迎交流, 互相探讨

### 空间点选验证码识别解决方案 #### 1. 验证码结构分析 的空间点选验证码由两个主要部分组成:标签部分和验证部分。标签部分展示需要点击的文字或图形,而验证部分则是一个复杂的背景图,其中包含了多个干扰项以及实际的目标对象[^1]。 #### 2. 图像预处理 为了提高后续特征提取的效果,在开始之前需对原始图像进行必要的预处理操作。这一步骤可能涉及灰度化、二值化、噪声去除等常规手段来增强目标区域与背景之间的对比度,从而使得待检的对象更容易被定位出来。 ```python import cv2 import numpy as np def preprocess_image(image_path): img = cv2.imread(image_path, 0) # Read image in grayscale mode _, thresh_img = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY_INV) kernel = np.ones((3, 3), dtype=np.uint8) cleaned_img = cv2.morphologyEx(thresh_img, cv2.MORPH_CLOSE, kernel) return cleaned_img ``` #### 3. 特征提取与匹配 对于此类基于视觉的任务而言,有效的特征描述子至关重要。考虑到YOLO模型擅长于物体检任务的特点,可将其应用于当前场景下的字符框定工作;而对于具体的字符识别,则推荐使用OCR技术完成最终确认过程。通过这种方式能够较为精准地区分出哪些是有效选项,哪些属于干扰因素。 ```python from paddleocr import PaddleOCR ocr_model = PaddleOCR(lang='ch') def extract_features_and_match(preprocessed_img): result = ocr_model.ocr(preprocessed_img) text_boxes = [] for line in result: box = line[0] txt = line[1][0] confidence_score = float(line[1][1]) if confidence_score >= 0.8: # Confidence threshold can be adjusted according to actual needs. text_boxes.append({"box": box, "text": txt}) return text_boxes ``` #### 4. 用户交互模拟 当成功解析出所有候选答案之后,下一步便是模仿真实用户的点击行为向服务器提交正确响应。此环节涉及到坐标转换逻辑的设计——即将屏幕上的物理位置映射至网页内部对应的虚拟坐标体系之中。此外还需注意动作轨迹的真实性模拟以免触发额外的安全机制。 ```python import pyautogui def simulate_user_interaction(text_boxes, target_texts=['一', '三']): screen_width, screen_height = pyautogui.size() for item in text_boxes: if any([target_text in item['text'] for target_text in target_texts]): center_x = (item['box'][0][0]+item['box'][2][0])/2 / screen_width * 100 center_y = (item['box'][0][1]+item['box'][2][1])/2 / screen_height * 100 pyautogui.moveTo(center_x, center_y, duration=0.5) pyautogui.click() simulate_user_interaction(extract_features_and_match(preprocess_image('captcha.png'))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值