1.人工智能的挑战
(1)big training data ——》Labeling cost 观点:深度学习没有大量标记数据工作效果并不好,甚至不可工作。
如:image classification 有上百万张标记图像
Speech recognition 有上千小时注解的语音数据
machine translation 数百外对对应句子
and so on.....
对于标签数据不足的解决方案:
标签传播算法、Multi-task learning、Transfer learning、Transductive learning 传导式学习
对偶学习:
在人工智能领域非常常见
AI task x--y y--x
机器翻译 英文--》中文 中文--》英文
语音处理 语音识别 文本转语音
图像理解 图片描述 图像生成
QA系统 问题回答 问题生成
关于dual learning 的文献
Dual unsupervised learning(NIPS 2016)
Dual supervised learning(ICML 2017)
Dual inference (IJCAL 2017)
Dual transfer learning(AAAI 2018)
(2)big computation ——》Effectiveness-efficienty tradeoff
微软亚洲研究院的研究:
分布式机器学习
lightweight machine learning
开源工具:LightGBM(据说效果好于XGboost),lightRNN ,lightLDA
(3)black magic ——》 Empirical hyperparameter tuning
微软研究: learning to learn
learning to teach
(4)blackbox learning ———》lack of interpretability 缺乏解释性
(5)Single-minde solution :观点 深度学习并不是唯一的解决方案
(6)Far from human intelligencce
2.以机器翻译作为例子
En -->Ch translation
primal Task f:x--->y
agent A ----------------------------------------------> agent B
<---------------------------------------------
Dual Task g:y--->x
Ch--->En translation
大概过程:学习返回的残差(使用到强化学习)
数学原理:P(x,y) = P(x)P(y|x;f) = P(y)P(x|y;g) 贝叶斯公式的思想
primal view dual view
体会:
DL有万能逼近某个函数 但是不等于人类智能
人有无意识的动作
relu sigmoid 函数过于简单,sin cos 函数就是复杂函数
机器翻译不解决文化问题 如:负荆请罪翻译为英文,机器做不到。。
读paper要有批判性读,发现问题,解决问题。