线性代数(一) 行列式

写在前面
    由于在电脑上直接打出公式不太好观察,并且也浪费不少时间,写此类博客最主要是为了自己能够理清知识脉络和学习交流,最近要学的东西太多,所以我就以图片+自身对知识的理解的形式以最有效率的方法对知识点进行说明。

什么是行列式,行列式的来源

    行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。 —–维基百科

    在我目前的认知中,我认为行列式来自于线性方程组,
Ax = b, A可以表示为行列式,行列式的值就是在二维,三维…n维空间中所占的面积或者体积…等以此类推(即由线面体….等各维变量所包裹成的物体,在行列式中每变动一个,就会带来对这个物体的描述的改变)

重大发现(第二次更改时所添加)
行列式的存在的意义已经不仅仅在简化线性方程组的解法了,柯西早就在论文中提出行列式其实是研究向量与向量之间的关系的,是“动”的,一般我们运用它来求值

因此,对于线程方程组的解的探究和向量与向量之间的关系的研究也不应该忽略行列式所起的作用

一、排列与逆序数,对角线原则
观察二三阶行列式与展开式
这里写图片描述

发现,列标排列为奇排列的符号为负,为偶排列的符号为正,因此可以用(-1)^t , t 为列逆序数来表示行列式各项的符号,如果第一列的项依次为a11 a12 a13,那么t为行逆序数

将行列式推广到一般情况就得出 :n阶行列式的的值为 符号为(-1)^t 的各项(全排列,同列同行只取一个)之和

二、性质

1.行列式与它的转置行列式相同
    整个转置过程没有发生项的变化,而符号根据t改变,t从列逆序数变成行逆序数,因此各项的符号也不发生改变,所以在行列式中行列具有相同的地位(换句话说将行列式转化成上三角或者下三角转得出变化算我输)

2.行列式的行列进行对换,行列式变号
    有向面积的方向发生变化,或者体积所处在的空间被倒过来了

3.两行相同或者成比例,行列式为0
    性质2只能等于0

4.行列式中有相加的元素,可以拆成两个行列式相加

5.行列之间的加减运算,略

三、解题技巧

1.范德蒙德公式

2.对于相同的项,进行消除,变成0

3.行列交换,数学归纳

4.行列式拆分

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值