二分法
二分法一种很常用的方法,之前的博文也介绍过二分法,今天来谈一谈二分的一种巧用。上题—传送门:
https://www.nowcoder.com/practice/dcc301bc11a7420b88afdbd272299809?tpId=90&tqId=30813&tPage=2&rp=2&ru=/ta/2018test&qru=/ta/2018test/question-ranking
这道题一开始看感觉好像很简单,然后认真一看似乎很懵,总想着贪心,但怎么贪好像都不太行。然后就考虑对答案进行贪心。对答案怎么贪心呢?其实就是二分答案,显然答案最大不会超过n, 最小为0。那么就可以考虑对区间 [ 0 , n ] [0, n] [0,n]进行二分答案,但还有一个重要的步骤就是检查当前的答案是否可行。即我们对每一个答案 l e n len len, 要判断当前区间是否可以通过最多转换m个字母来得到一段连续的 l e n len len。怎么思考这个问题呢,显然,我们可以枚举连续的 l e n len len长的区间,然后检查一下里面字符a或者b的数量,这个可以通过预先的前缀和数组来计算,然后对于每次二分的答案,只要检查当前连续的 l e n len len里面的a或者b的数量的最小值是否小于m即可。(注意要分别讨论把a换成和把b换成a的情况)
AC代码:
// 小学生一发的刷题之路
// 3月3号;
//
//
//
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <deque> //双向队列;
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <vector>
#include <cstdlib>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const double PI=acos(-1.0);
const double eps=1e-10;
const int maxn=1e5+5;
const int maxm=1e3+5;
const ll mod=1e9+7;
const int INF=1e8;
template<class T>
inline void read(T &ret){ //快速输入模版;
ret=0;
int f=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
ret=ret*10+c-'0';
c=getchar();
}
ret*=f;
}
template <class T>
inline void out(T ret){ //快速输出模版;
if(ret>9)
{
out(ret/10);
}
putchar(ret%10+'0');
}
int n,m,sum[2][maxn];
string str;
bool pd(int n,int len,int m,char c){
int ans=m+1;
for(int i=1;i<=n-len+1;i++){
ans=min(sum[c-'a'][i+len-1]-sum[c-'a'][i-1],ans);
}
return ans<=m;
}
int solve(int n,int m,char c){
int l=0,r=n;
while(l<r){
int mid=(l+r)/2;
if(pd(n,mid,m,c)==1){
l=mid+1;
}else{
r=mid;
}
}
if(!pd(n,l,m,c)){
l--;
}
return l;
}
int main()
{
scanf("%d %d",&n,&m);
cin>>str;
sum[0][0]=sum[1][0]=0;
for(int i=1;i<=n;i++){ //统计数组前缀和;
if(str[i-1]=='a'){
sum[0][i]=sum[0][i-1]+1;
sum[1][i]=sum[1][i-1];
}else{
sum[1][i]=sum[1][i-1]+1;
sum[0][i]=sum[0][i-1];
}
}
int ans_a=solve(n,m,'a');
int ans_b=solve(n,m,'b');
printf("%d\n",max(ans_a,ans_b));
return 0;
}
新的开始,每天都要快乐哈!