二分法

二分法

二分法一种很常用的方法,之前的博文也介绍过二分法,今天来谈一谈二分的一种巧用。上题—传送门:
https://www.nowcoder.com/practice/dcc301bc11a7420b88afdbd272299809?tpId=90&tqId=30813&tPage=2&rp=2&ru=/ta/2018test&qru=/ta/2018test/question-ranking

这道题一开始看感觉好像很简单,然后认真一看似乎很懵,总想着贪心,但怎么贪好像都不太行。然后就考虑对答案进行贪心。对答案怎么贪心呢?其实就是二分答案,显然答案最大不会超过n, 最小为0。那么就可以考虑对区间 [ 0 , n ] [0, n] [0,n]进行二分答案,但还有一个重要的步骤就是检查当前的答案是否可行。即我们对每一个答案 l e n len len, 要判断当前区间是否可以通过最多转换m个字母来得到一段连续的 l e n len len。怎么思考这个问题呢,显然,我们可以枚举连续的 l e n len len长的区间,然后检查一下里面字符a或者b的数量,这个可以通过预先的前缀和数组来计算,然后对于每次二分的答案,只要检查当前连续的 l e n len len里面的a或者b的数量的最小值是否小于m即可。(注意要分别讨论把a换成和把b换成a的情况)

AC代码:

//  小学生一发的刷题之路
//  3月3号;
//
//
//

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <deque>                //双向队列;
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <vector>
#include <cstdlib>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const double PI=acos(-1.0);
const double eps=1e-10;
const int maxn=1e5+5;
const int maxm=1e3+5;
const ll mod=1e9+7;
const int INF=1e8;
template<class T>
inline void read(T &ret){       //快速输入模版;
    ret=0;
    int f=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        ret=ret*10+c-'0';
        c=getchar();
    }
    ret*=f;
}
template <class T>
inline void out(T ret){     //快速输出模版;
    if(ret>9)
    {
        out(ret/10);
    }
    putchar(ret%10+'0');
}
int n,m,sum[2][maxn];
string str;

bool pd(int n,int len,int m,char c){
    int ans=m+1;
    for(int i=1;i<=n-len+1;i++){
        ans=min(sum[c-'a'][i+len-1]-sum[c-'a'][i-1],ans);
    }
    return ans<=m;
}

int solve(int n,int m,char c){
    int l=0,r=n;
    while(l<r){
        int mid=(l+r)/2;
        if(pd(n,mid,m,c)==1){
            l=mid+1;
        }else{
            r=mid;
        }
    }
    if(!pd(n,l,m,c)){
        l--;
    }
    return l;
}

int main()
{
    scanf("%d %d",&n,&m);
    cin>>str;
    
    sum[0][0]=sum[1][0]=0;
    for(int i=1;i<=n;i++){           //统计数组前缀和;
        if(str[i-1]=='a'){
            sum[0][i]=sum[0][i-1]+1;
            sum[1][i]=sum[1][i-1];
        }else{
            sum[1][i]=sum[1][i-1]+1;
            sum[0][i]=sum[0][i-1];
        }
    }
    
    int ans_a=solve(n,m,'a');
    int ans_b=solve(n,m,'b');
    printf("%d\n",max(ans_a,ans_b));
    return 0;
}

新的开始,每天都要快乐哈!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值