依旧是信号处理相关的东西,本文再次讲解如何应用包络谱和谱峭度分析一维振动信号进而诊断轴承故障,运行环境为MATLAB R2021B。
面包多第三方代码:
滚动轴承的局部故障可能发生在外圈、内圈、保持架或滚动体中。 当滚动体撞击外圈或内圈上的局部故障,或者滚动体上的故障经过外圈或内圈时,轴承和传感器之间的高频共振会被激发, 下图显示了内圈处发生局部故障。
故障频率计算如下
包络谱分析
以轴承内圈故障信号dataInner 为例,在时域中可视化原始内圈故障数据
xInner = Not Found;
fsInner = dataInner.bearing.sr;
tInner = (0:length(xInner)-1)/fsInner;
figure
plot(tInner, xInner)
xlabel('Time, (s)')
ylabel('Acceleration (g)')
title('Raw Signal: Inner Race Fault')
xlim([0 0.1])
信号的功率谱
figure
[pInner, fpInner] = pspectrum(xInner, fsInner);
pInner = 10*log10(pInner);
plot(fpInner, pInner)
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')
title('Raw Signal: Inner Race Fault')
legend('Power Spectrum')
放大低频范围内原始信号的功率谱,仔细观察 BPFI 的频率响应及其前几个谐波
在 BPFI 及其谐波处看不到清晰的谱线图。 看时域数据,观察到原始信号的幅度在一定的频率上被调制,调制的主频率在1/0.009Hz~111Hz左右。 已知BPFI为118.875 Hz,表明轴承可能存在内圈故障。并查看其包络谱
figure
subplot(2, 1, 1)
plot(tInner, xInner)
xlim([0.04 0.06])
title('Raw Signal: Inner Race Fault')
ylabel('Acceleration (g)')
annotation('doublearrow', [0.37 0.71], [0.8 0.8])
text(0.047,