同步压缩变换在时频分析和盲源分离等方面的应用

时频分析方法使用时-频域联合分布描述信号的瞬态特征,并通过瞬时频率估计来表征信号特征频率随时间变化的趋势。广泛使用的短时傅里叶变换STFT 和小波变换WT的时频分辨率取决于窗口和基函数的选择,但是由于窗口和基函数在分析中固定不变,因而对于多分量时变信号的匹配效果不佳;Wigner-Ville 分布WMD对噪声的鲁棒性不足且对于多分量时变信号存在交叉干扰项;经验模态分解EMD及其改进方法缺乏数学理论支撑,并存在端点效应和模态混叠等问题。以上时频分析方法存在一些共性问题,例如它们在时频平面的变换系数分布比较离散,瞬时频率曲线幅值能量不够集中,因此时频谱会出现模糊的现象。为了实现理想的时频表示,在原始时频谱的基础上进行能量重排是当前的研究热点。基于同步压缩变换的时频分析方法实现了对时频系数的压缩和重排,能够对复杂多分量信号实现高分辨率表达。根据同步压缩变换的特点,通常可以分为两种:沿着频率方向的同步压缩变换和沿着时间方向的同步压缩变换。本文先主要讲解沿着频率方向的同步压缩变换方法。

同步压缩变换的前身,即重排算法,具有坚实的理论基础。重排算法作为一种后处理的时频分析方法,主要用于提升时频表达的效果,但是它最大的缺陷是不支持信号重构。在此基础上,小波的创始人之一Daubechies等在2011年提出了同步压缩小波变换SST,SST通过同步压缩算子对时频系数进行重排,将信号在时频平面任一点处的时频分布移到能量的重心位置,增强瞬时频率的能量集中,较好地解决传统时频分析方法存在的时频模糊问题。但从数学本质上来说,SST方法通过在尺度域(频域)提高了时频分布的聚集性从而减小了瞬时频率曲线的畸变其时频系数只是在频率轴上重排,并没有在时间轴上重排。以STFT为基础的同步压缩变换和以小波变换为基础的同步压缩变换为例,当然还有以S变换为基础的同步压缩变换和以交叉小波变换为基础的同步压缩变换等等,以后都会慢慢涉及到。

其中,IFO为瞬时频率算子。

上面只是简化后的推导,更详细的理论细节还得看Daubechies的原始论文。

首先看一个调频信号的例子

t=linspace(0,10,2000);
x=cos(2*pi*(0.1*t.^2.6+3*sin(2*t)+10*t)) + exp(-0.2*t).*cos(2*pi*(40+t.^1.3).*t);%调频信号
x=x(:);%向量化
dt=t(2)-t(1);%采样时间

羡慕进行CWT和STFT的参数设置,CWT采用morlet小波函数,STFT采用gauss窗函数

CWTopt=struct('gamma',eps,'type','morlet','mu',6,'s',2,'om',0,'nv',64,'freqscale','linear');
STFTopt=struct('gamma',eps,'type','gauss','mu',0,'s',0.05,'om',0,'winlen',256,'squeezing','full');

看一下调频信号的连续小波变换时频谱图,注意这个图我忘记改了,纵坐标应该是尺度而不是频率

CWT时频谱图

看一下原始信号及CWT逆变换后的重构信号

然后看一下短时傅里叶变换的时频谱图

看一下原始信号及STFT逆变换后的重构信号

以小波变换为基础的同步压缩变换时频谱如下

相应的逆变换后的重构信号如下

以STFT为基础的同步压缩变换时频谱如下

相应的逆变换后的重构信号如下

此外,同步压缩变换还可用作盲源分离,以STFT为基础的同步压缩变换对原始信号进行盲源分离,结果如下

效果还是杠杠的,下面再查看几个调频信号的同步压缩变换,首先查看如下文章

调制信号的连续小波变换 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/539011866

看一下二次线性调频信号的同步压缩变换时频谱(基于小波变换)

二次线性调频信号的同步压缩变换时频谱(基于STFT)

看一下蝙蝠回声信号的同步压缩变换时频谱(基于小波变换)

蝙蝠回声信号的同步压缩变换时频谱(基于STFT)

同步压缩变换时频谱(基于小波变换)应该是丢失了一些信息

看一下地震信号的同步压缩变换时频谱(基于小波变换)

地震信号的同步压缩变换时频谱(基于STFT)

下面看一下轴承模拟故障冲击信号的同步压缩变换时频谱

首先先要看一下这篇文章

滚动轴承模拟故障信号生成及时频谱分析 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/539756136

轴承模拟故障冲击信号的同步压缩变换时频谱(基于小波变换)

可以看出明显规律的冲击成分.

实际轴承故障诊断及盲源分离算法的推导后续几篇文章会给出,其实我不太喜欢用时频谱诊断轴承故障,还是更喜欢频谱,包络谱,功率谱等。

详细代码见如下链接

🍞正在为您运送作品详情

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值