MapReduce的优缺点:
优点:可在短时间内完成大量工作;
缺点:算法必须经过重写,需要对系统工程有一定的理解;
适用数据类型:数值型和标称型数据。
MapReduce是一个软件框架,可以将单个计算作业分配给多台计算机执行。它假定这些作业在单机上需要很长的运行时间,因此使用多台机器缩短运行时间。常见的例子是日常统计数字的汇总,该任务单机上执行时间将超过一天。
MapReduce的名字是由函数式编程中常用的map和reduce两个单词组成的。
MapReduce在大量节点组成的集群上运行,它的工作流程是:单个作业被分成很多小份,输入数据也被切片分发到各个节点,各个节点只在本地数据上做运算,对应的运算代码称为mapper,这个过程被称为map阶段,每个mapper的输出通过某种方式组合(一般还会做排序)。排序后的结果再被分成小份分发给各个节点进行下一步处理工作。第二步的处理阶段被称为reduce阶段,对应的运行代码被称为reducer。reducer的输出就是程序的最终执行结果。
MapReduce的优势在于它使得程序以并行的方式执行。如果集群由10个节点组成,而原先的作业需要10个小时来完成,那么应用MapReduce该作业只需要一个多小时就可以得到同样的结果。
举例:入给出过去100年某国每个城市每天的正确气温数据,我们想知道近100年该国最高气温。这里的数据格式为<city><date><temp>。为了统计该时段内的最高温度,可以先将这些数据根据节点数分成很多份,每个节点各自寻找本机数据集上的最高温度,这样每个mapper将产生