相关的基本概念

定义1: 两个随机样本变量 x x x y y y 之间的协方差( covariance \textbf{covariance} covariance)是两个变量之间线性关联的度量, 由公式定义
(1) c o v ( x , y ) = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) cov(x,y) = \frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})\tag{1} cov(x,y)=n11i=1n(xixˉ)(yiyˉ)(1)
注意: 协方差类似于方差, 不同之处在于为两个变量 (上面的 x x x y y y) 定义协方差, 而方差只为一个变量定义。事实上, c o v ( x , x ) = v a r ( x ) cov (x, x) = var (x) cov(x,x)=var(x)

协方差可以被认为是 x x x y y y 的数据元素对之间的匹配和不匹配之和:当对中的两个元素在它们的平均值的同一侧时, 就会发生匹配;当对中的一个元素高于其平均值, 而另一个元素低于其平均值时, 就会发生不匹配。

当匹配大于不匹配时, 协方差为正, 当不匹配大于匹配时, 协方差为负。协方差的绝对值大小表示 x x x y y y 之间线性关系的强度:线性关系越强, 协方差值就越大。协方差的大小也受数据元素尺度的影响, 为了消除尺度因子, 将相关系数作为线性关系的无尺度度量。

定义2: 两个样本变量 x x x y y y 之间的相关系数是两个变量之间线性关联的无标度度量, 并通过公式给出
(2) r x y = c o v ( x , y ) s x s y r_{xy} = \frac{cov(x,y)}{s_xs_y}\tag{2} rxy=sxsycov(x,y)(2)
We also use the term coefficient   of   determination \textbf{coefficient of determination} coefficient of determination for r 2 r^2 r2.

注意: Just as we saw for the variance in Measures   of   Variability \textbf{Measures of Variability} Measures of Variability, the c o v a r i a n c e covariance covariance can be calculated as
(3) 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) = 1 n − 1 ( ∑ i = 1 n x i y i − x ˉ ∑ i = 1 n y i − y ˉ ∑ i = 1 n x i + n x ˉ y ˉ ) = 1 n − 1 ( ∑ i = 1 n x i y i − n x ˉ y ˉ ) \begin{aligned} \frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})=& \frac{1}{n-1}(\sum_{i=1}^{n}x_iy_i-\bar{x}\sum_{i=1}^{n}y_i-\bar{y}\sum_{i=1}^{n}x_i+n\bar{x}\bar{y})\\ =&\frac{1}{n-1}(\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y})\\ &\tag{3} \end{aligned} n11i=1n(xixˉ)(yiyˉ)==n11(i=1nxiyixˉi=1nyiyˉi=1nxi+nxˉyˉ)n11(i=1nxiyinxˉyˉ)(3)
因此, 我们还可以将相关系数计算为
(4) ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 ∑ i = 1 n y i 2 − n y ˉ 2 \frac{\sum_{i = 1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sqrt{\sum_{i=1}^{n}x_i^2-n\bar{x}^2}\sqrt{\sum_{i=1}^{n}y_i^2-n\bar{y}^2}}\tag{4} i=1nxi2nxˉ2 i=1nyi2nyˉ2 i=1nxiyinxˉyˉ(4)
性质1: − 1 ≤ r ≤ 1 -1\leq r\leq 1 1r1.

注意: 如果 r r r 接近 1, 则 x x x y y y 呈正相关。正线性相关意味着 x x x 的高值与 y y y 的较高值相关, x x x 的较低值与 y y y 的低值相关联。

如果 r r r 接近 -1, 则 x x x y y y 呈负相关。负线性相关意味着 x x x 的较高值与 y y y 的较低值相关联, 而 x x x 的较低值与 y y y 的较高值相关联。

当接近 0 时, x x x y y y 之间几乎没有线性关系。

注意: We have defined covariance and the correlation coefficient for data samples. We can also define covariance and correlation coefficient for populations, based on their probability density function (pdf).

定义3: The covariance \textbf{covariance} covariance between two random variables x x x and y y y for a population with discrete or continuous pdf is defined by
(5) c o v ( x , y ) = E [ ( x − μ x ) ( y − μ y ) ] cov(x,y) = E[(x-\mu_{x})(y-\mu_{y})]\tag{5} cov(x,y)=E[(xμx)(yμy)](5)
Where E [ ] E[] E[] is the expectation function.

定义4: The (Pearson’s   product   moment) \textbf{(Pearson’s product moment)} (Pearson’s product moment) correlation coefficient for two variables x x x and y y y for a population with discrete or continuous pdf is
(6) ρ = c o v ( x , y ) σ x σ y \rho = \frac{cov(x,y)}{\sigma_x\sigma_y}\tag{6} ρ=σxσycov(x,y)(6)
性质2: − 1 ≤ ρ ≤ 1 -1\leq\rho\leq1 1ρ1.

性质3: c o v ( x , y ) = E [ x y ] − μ x μ y cov(x,y) = E[xy]-\mu_x\mu_y cov(x,y)=E[xy]μxμy

性质4: c o v ( x , y ) = 0 cov(x,y) = 0 cov(x,y)=0, x x x and y y y are independent.

性质5:
(7) v a r ( x + y ) = v a r ( x ) + v a r ( y ) + 2 c o v ( x , y ) v a r ( x − y ) = v a r ( x ) + v a r ( y ) − 2 c o v ( x , y ) \begin{aligned} var(x+y) = var(x)+var(y)+2cov(x,y)\\ var(x-y) = var(x)+var(y)-2cov(x,y) \tag{7} \end{aligned} var(x+y)=var(x)+var(y)+2cov(x,y)var(xy)=var(x)+var(y)2cov(x,y)(7)
注意: It turns out that r r r is not an unbiased estimate of ρ \rho ρ. A relatively unbiased estimate of ρ 2 \rho^2 ρ2 is given by the adjusted   coefficient   of   determination \textbf{adjusted coefficient of determination} adjusted coefficient of determination r a d j 2 r_{adj}^2 radj2:
(8) r a d j 2 = 1 − ( 1 − r 2 ) ( n − 1 ) n − 2 r_{adj}^2 = 1-\frac{(1-r^2)(n-1)}{n-2}\tag{8} radj2=1n2(1r2)(n1)(8)
while r a d j 2 r_{adj}^2 radj2 is a better estimate of of the population coefficient of determination, especially for small values of n n n, for large values of n n n it is easy to see that r a d j 2 ≈ r 2 r_{adj}^2\approx r^2 radj2r2. Note too that r a d j 2 ≤ r 2 r_{adj}^2\leq r^2 radj2r2, and while r a d j 2 r_{adj}^2 radj2 can be negative, this is relatively rare.

### 回答1: 学习量子力学的基本概念需要从量子力学的基本原理开始,其中包括量子力学的基本概念、量子力学的数学和物理基础、量子力学的系统性和其他研究方法。除此之外,还可以通过阅读有关量子力学的研究论文和其他资源来深入了解量子力学的原理和技术。 ### 回答2: 掌握量子力学的基本概念并不容易,因为它涉及了许多抽象的数学概念和奇特的物理现象。以下是一些学习量子力学基本概念的建议。 首先,建议从量子力学的历史和背景开始学习。了解量子力学的起源和发展有助于我们理解为什么科学家们提出了这样的理论以及它的基本假设。 其次,理解波粒二象性是非常重要的。在量子力学中,粒子既可以呈现出波动性,又可以呈现出粒子性。学习波动粒子的性质,如波长、频率和动量,有助于我们理解量子力学的基本概念。 第三,学习量子力学的基本数学工具是必不可少的。学习矩阵和向量的运算规则,了解薛定谔方程及其解的意义,理解态矢量和算符的概念等等,都是量子力学基本数学工具的一部分。 此外,通过阅读量子力学的经典教材和参考书籍,可以帮助深入理解该领域的基本概念。同时,进行数学推导和演算是巩固知识的好方法。通过解决一些典型问题和例子,可以加深对量子力学基本概念的理解。 另外,量子力学实验是深化理解的关键。了解一些经典的实验,如双缝干涉实验和斯特恩-盖拉赫实验,有助于理解量子力学的奇特现象和观察结果。 最后,不要忘记与其他对量子力学感兴趣的人进行交流和讨论。参加课程、研讨会以及加入学习群体,可以与他人分享思考和疑惑,并从他人的观点中获得启发。 总之,掌握量子力学的基本概念需要耐心和坚持。通过了解历史背景,学习波粒二象性,掌握基本数学工具,阅读教材和参考书籍,进行实验和与他人交流,我们能够逐渐掌握量子力学的基本概念,从而进一步深入学习和研究这个领域。 ### 回答3: 要掌握量子力学的基本概念,可以从以下几个方面入手。 首先,深入了解基本的量子力学原理。量子力学的基本原理包括波粒二象性、不确定性原理、量子叠加和纠缠等。通过学习量子力学的数学表达和方程式,如薛定谔方程,可以加深对这些基本原理的理解。 其次,学习量子力学的数学工具。量子力学的数学描述主要是以线性代数为基础的。因此,了解和学习线性代数的相关概念和技巧是必不可少的。这包括了矩阵、向量、内积、外积、态矢量等。熟悉这些数学工具能够帮助我们更好地理解和运用量子力学的概念。 另外,通过学习和阅读相关的书籍、论文和教材,了解历史发展和基本理论。量子力学的历史发展过程中出现了许多重要的实验和理论突破,了解这些背景有助于我们更好地理解和掌握量子力学的基本概念。 此外,进行实验与观察也是掌握量子力学的基本概念的重要途径。通过参与实验和观察,我们可以直接体验和验证量子力学的一些现象和理论。这样不仅可以巩固对基本概念的理解,还可以培养独立思考和实验设计能力。 总结起来,要掌握量子力学的基本概念需要深入了解基本原理,学习相关的数学工具,了解历史发展和基本理论,并进行实验与观察。通过多种途径的学习和实践,我们就能更好地掌握和应用量子力学的基本概念
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值