Multiple Correlation

Multiple Correlation
We can also calculate the correlation between more than two variables.
(计算多变量之间的相关性)
定义1: 给定变量 x x x, y y y, z z z, multiple   correlation   coefficient \textbf{multiple correlation coefficient} multiple correlation coefficient (复相关系数)
(1) R z , x y = r x z 2 + r y z 2 − 2 r x z r y z r x y 1 − r x y 2 R_{z,xy} = \sqrt{\frac{r_{xz}^2+r_{yz}^2-2r_{xz}r_{yz}r_{xy}}{1-r_{xy}^2}}\tag{1} Rz,xy=1rxy2rxz2+ryz22rxzryzrxy (1)
其中 r x z r_{xz} rxz, r y z r_{yz} ryz, r x y r_{xy} rxy 为简单相关系数, x x x y y y 被视为独立变量, z z z 为依赖变量。
We also define the multiple   coefficient   of   determination \textbf{multiple coefficient of determination} multiple coefficient of determination to be the square of the multiple correlation coefficient.
定义2: The adjusted \textbf{adjusted} adjusted multiple coefficient of determination is
(2) R a d j 2 = 1 − ( 1 − R 2 ) ( n − 1 ) n − k − 1 R_{adj}^2 = 1-\frac{(1-R^2)(n-1)}{n-k-1}\tag{2} Radj2=1nk1(1R2)(n1)(2)
其中 k k k 为独立变量的个数, n n n 为数据长度。

定义2: the partial   correlation \textbf{partial correlation} partial correlation (偏相关) of x x x and z z z holding y y y constant is defined as follows:
(3) r z x , y = r x z − r y z r x y 1 − r y z 2 1 − r x y 2 r_{zx,y} = \frac{r_{xz}-r_{yz}r_{xy}}{\sqrt{1-r_{yz}^2}\sqrt{1-r_{xy}^2}}\tag{3} rzx,y=1ryz2 1rxy2 rxzryzrxy(3)
In the semi-partial   correlation \textbf{semi-partial correlation} semi-partial correlation (半偏相关), the correlation between x x x and y y y is eliminated, but not the correlation between x x x and z z z and y y y and z z z:
(4) r z ( x , y ) = r x z − r y z r x y 1 − r x y 2 r_{z(x,y)} = \frac{r_{xz}-r_{yz}r_{xy}}{\sqrt{1-r_{xy}^2}}\tag{4} rz(x,y)=1rxy2 rxzryzrxy(4)
性质1: r z ( x , y ) 2 = R z , x y 2 − r y z 2 r_{z(x,y)}^2 = R_{z,xy}^2-r_{yz}^2 rz(x,y)2=Rz,xy2ryz2.
Proof:
(5) R z , x y 2 − r y z 2 = r x z 2 + r y z 2 − 2 r x z r y z r x y 1 − r x y 2 − r y z 2 = r x z 2 + r y z 2 − 2 r x z r y z r x y − r y z 2 ( 1 − r x y 2 ) 1 − r x y 2 = r x z 2 + r y z 2 r x y 2 − 2 r x z r y z r x y 1 − r x y 2 = ( r x z − r y z r x y ) 2 1 − r x y 2 = r z ( x , y ) 2 \begin{aligned} R_{z,xy}^2-r_{yz}^2 = & \frac{r_{xz}^2+r_{yz}^2-2r_{xz}r_{yz}r_{xy}}{1-r_{xy}^2}-r_{yz}^2\\ = & \frac{r_{xz}^2+r_{yz}^2-2r_{xz}r_{yz}r_{xy}-r_{yz}^2(1-r_{xy}^2)}{1-r_{xy}^2}\\ = & \frac{r_{xz}^2+r_{yz}^2r_{xy}^2-2r_{xz}r_{yz}r_{xy}}{1-r_{xy}^2}\\ = & \frac{(r_{xz}-r_{yz}r_{xy})^2}{1-r_{xy}^2}\\ = & r_{z(x,y)}^2\tag{5} \end{aligned} Rz,xy2ryz2=====1rxy2rxz2+ryz22rxzryzrxyryz21rxy2rxz2+ryz22rxzryzrxyryz2(1rxy2)1rxy2rxz2+ryz2rxy22rxzryzrxy1rxy2(rxzryzrxy)2rz(x,y)2(5)
性质2: r z x , y 2 = r z ( x y ) 2 1 − r y z 2 r_{zx,y}^2 = \frac{r_{z(xy)}^2}{1-r_{yz}^2} rzx,y2=1ryz2rz(xy)2.
Proof:
(6) r z x , y 2 ( 1 − r y z 2 ) = ( r x z − r y z r x y ) 2 ( 1 − r y z 2 ) ( 1 − r y z 2 ) ( 1 − r x y 2 ) = ( r x z − r y z r x y ) 2 1 − r x y 2 = r z ( x y ) 2 r_{zx,y}^2(1-r_{yz}^2) = \frac{(r_{xz}-r_{yz}r_{xy})^2(1-r_{yz}^2)}{(1-r_{yz}^2)(1-r_{xy}^2)}=\frac{(r_{xz}-r_{yz}r_{xy})^2}{1-r_{xy}^2}=r_{z(xy)}^2\tag{6} rzx,y2(1ryz2)=(1ryz2)(1rxy2)(rxzryzrxy)2(1ryz2)=1rxy2(rxzryzrxy)2=rz(xy)2(6)
性质3:
(7) R z , x 1 … x k 2 = r z , x 1 2 + r z ( x 2 , x 1 ) 2 + r z ( x 3 , x 1 x 2 ) 2 + ⋯ + r z ( x k , x 1 x 2 x 3 … x k − 1 ) 2 R_{z,x_1\dots x_k}^2 = r_{z,x_1}^2+r_{z(x_2,x_1)}^2+r_{z(x_3,x_1x_2)}^2+\dots+r_{z(x_k,x_1x_2x_3\dots x_{k-1})}^2\tag{7} Rz,x1xk2=rz,x12+rz(x2,x1)2+rz(x3,x1x2)2++rz(xk,x1x2x3xk1)2(7)
如果变量之间相互独立,则
(8) R z , x 1 … x k 2 = r z x 1 2 + r z x 2 2 + ⋯ + r z x k 2 R_{z,x_1\dots x_k}^2 =r_{zx_1}^2+r_{zx_2}^2+\dots+r_{zx_k}^2\tag{8} Rz,x1xk2=rzx12+rzx22++rzxk2(8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值