线性规划之单纯形

本文详细介绍了线性规划的标准型,包括目标函数和约束条件,以及线性规划问题解的概念。重点讲解了单纯形法的原理,如凸集、顶点定理和迭代思路,阐述了如何构造初始可行基、进行基变换和最优性检验。同时,讨论了迭代过程中的计算步骤,如确定换入、换出变量的策略。
摘要由CSDN通过智能技术生成

1、线性规划的标准型

目标函数:

(1) max ⁡ Z = c 1 x 1 + c 2 x 2 + ⋯ + c n x n \max Z = c_1x_1+c_2x_2+\dots+c_nx_n\tag{1} maxZ=c1x1+c2x2++cnxn(1)

约束条件:

(2) s . t . { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 2 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m x 1 , x 2 , … , x n ≥ 0 b 1 , b 2 , … , b n ≥ 0 s.t.\left\{ \begin{aligned} & a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1 \\ & a_{21}x_2+a_{22}x_2+\dots+a_{2n}x_n=b_2 \\ & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ & a_{m1}x_1+a_{m2}x_2+\dots+a_{mn}x_n=b_m \\ & x_1,x_2,\dots,x_n \geq 0 \quad b_1,b_2,\dots,b_n\geq 0 \\ \tag{2} \end{aligned} \right. s.t.a11x1+a12x2++a1nxn=b1a21x2+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bmx1,x2,,xn0b1,b2,,bn0(2)

简记

目标函数最大
约束条件等式
决策变量非负
资源变量非负

向量形式

(3) max ⁡ Z = C X s . t . { ∑ i = 1 n P j x j = b i = 1 , 2 , … , m x j ≥ 0 j = 1 , 2 , … , n \max Z = CX \\ s.t.\left\{ \begin{aligned} & \sum_{i=1}^{n}P_jx_j=b\quad i=1,2,\dots,m \\ & x_j\geq 0\quad j=1,2,\dots,n \\ \tag{3} \end{aligned} \right. maxZ=CXs.t.i=1nPjxj=bi=1,2,,mxj0j=1,2,,n(3)

矩阵形式

(4) max ⁡ Z = C X s . t . { A X = b X ≥ 0 \max Z = CX \\ s.t.\left\{ \begin{aligned} & AX=b \\ & X\geq 0 \\ \tag{4} \end{aligned} \right. maxZ=CXs.t.{ AX=bX0(4)

线性规划问题解的概念

最优解:使目标函数 ( 1 ) (1) (1)达到最大值的可行解。
:设 A A A是约束方程组 ( 2 ) (2) (2) m × n m\times n m×n阶系数矩阵 ( n > m ) (n>m) (n>m)其秩为 m m m B B B A A A的一个 m × m m\times m m×m阶的满秩子矩阵,称 B B B是线性规划问题的一个基
(5) B = [ a 11 a 12 … a 1 m ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 … a m m ] = ( P 1 , … , P j , … , P m ) B= \left[ \begin{matrix} a_{11} & a_{12} & \dots & a_{1m}\\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \\ \end{matrix} \right]=(P_1,\dots,P_j,\dots,P_m)\tag{5} B=a11am1a12am2a1mamm=(P1,,Pj,,Pm)(5)
上式中 P j , j = 1 , … , m P_j,j=1,\dots,m Pj,j=1,,m基向量 x j x_j xj为相应基向量的基变量,除基变量以外的变量称为非基变量
基解:在约束方程组 ( 2 ) (2) (2)中,令所有非基变量 x m + 1 = x m + 2 = ⋯ = x n = 0 x_{m+1}=x_{m+2}=\dots=x_{n}=0 xm+1=xm+2==xn=0,因为 ∣ B ∣ ≠ 0 |B|\neq0 B̸=0,据克莱姆法则,对于 ( 2 ) (2) (2)可以求出唯一解 X B = ( x 1 , x 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值