Colabfold安装和使用 安装mmseq2

本文介绍了Colabfold,一个简化版的AlphaFold,用于sequence到pdb的预测,适合资源有限的环境。内容包括Colabfold与AlphaFold的区别、安装过程、使用方法及如何处理复合物。此外,还提到了mmseq2的安装和可能的用途。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

啥是colabfold?
sequence–>pdb的预测工具,也是alphafold的简化版
colabfold和alphafold rossetafold的区别?
官方说法:https://new.qq.com/omn/20220531/20220531A01DN000.html
为啥要整一个colabfold?
说白了,alphafold需要大量的计算资源和存储资源,光是依赖的数据库就需要几个T,显卡啥的更是要求比较高,这个门槛显然是比较高的,很多人没办法在本地运行alphafold,这时候就开发了一个colabfold来帮助科研人在本地运行sequence–>pdb的预测;
除此以外,还有一个原因,Google的colab版的alphafold运行起来比较不稳定,而且跑起来比较慢,容易掉线,需要翻墙等等有一系列原因
如何使用colabfold?
colabfold官网:https://colabfold.mmseqs.com/
在这里插入图片描述这里的500GB是指压缩包容量,根据readme文件的说法,可能解压后大概是900GB(我猜的),当然,也可以不整数据库,后边说安装的时候就会提到为啥不用整数据库
colabfold安装?
下载源码:https://github.com/sokrypton/ColabFold
把colabfold的项目源码放到一个固定的位置,然后搭建虚拟环境:

conda create -n colabfold python=3.8

激活环境:

conda activate colabfold

下面的就是readme自带的四条命令,这个按照顺序在虚拟环境中执行就可以

pip install "colabfold[alphafold] @ git+https://github.com/sokrypton/ColabFold"
pip install -q "jax[cuda]>=0.3.8,<0.4" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# For template-based predictions also install kalign and hhsuite
conda install -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0
# For amber also install openmm and pdbfixer
conda install -c conda-forge openmm=7.5.1 pdbfixer

安装mmseq2:
源码:https://github.com/soedinglab/MMseqs2
安装mmseq2就用下边这条命令

conda install -c conda-forge -c bioconda mmseqs2

至此,环境已经搭好了,下面就可以运行
接下来就是运行了:

colabfold_batch <directory_with_fasta_files> <result_dir> 

这条命令就是colabfold给提供的一条,我们可以直接用这条命令直接预测,第一个参数就是fasta路径,第二个就是输出结果的路径。例如:colabfold_batch ./6LO2.fasta ./result 。6LO2.fasta这个文件,可以是单链,可以是双链,双链的话,就是一条一条跑的,最终能跑出来多个结果
如何跑复合物?
例子:XXXX:SSSSSSSSSS,就两条链中间加冒号就可以
mmseq2?
在colabfold的readme中,还有mmseq2这个注释,这个应该是单用的,不需要用在pdb prediction的过程中。我个人认为,如果想用mmseq2这个选项,可以直接按照mmseq2的官网的readme来,但是mmseq2那个官网给的只是单链的alignment,可能paired alignment并不好使;colabfold这个mmseq2是升级版,使用的也是去过冗余的数据库,具体效果我没用过,暂不确定,等用完了再来补;当然,如果只需要完成sequence–>pdb的预测,mmseq2前边的步骤就够用了

### ColabFold 的在线使用方法 ColabFold 是一种基于 AlphaFold RoseTTAFold 的蛋白质结构预测工具,它提供了便捷的方式让用户无需复杂的计算资源即可完成蛋白质结构预测。以下是关于其在线使用的相关内容: #### Google Colab 平台上的 ColabFold 使用 Google Colab 提供了一个免费的云端 Jupyter Notebook 环境,支持 GPU 加速,非常适合运行像 ColabFold 这样的大型计算任务。用户可以通过访问官方提供的 Colab 笔记本来启动 ColabFold。 - 官方提供了一组可以直接在 Google Colab 上运行的笔记本文件[^1]。这些笔记本书签链接通常会引导到预配置好的环境,在其中只需上传序列数据并执行单元格即可获得预测结果。 #### WebServer 版本的 ColabFold 除了通过 Google Colab 手动操作外,还存在一个更简便的选择——WebServer 版本的 ColabFold。此版本允许用户仅需提交 FASTA 文件而不需要任何编程背景就能得到蛋白质模型的结果。 - 用户可前往指定网站 (如果可用),按照指引上传目标蛋白序列文件或者粘贴序列字符串来发起作业请求[^2]。注意该服务可能由于需求量大而导致等待时间较长。 #### 注意事项 无论采用哪种方式,在线使用前都应确认所选平台当前状态正常以及了解相关费用政策(部分高级功能可能会收费)[^3]。此外考虑到隐私保护问题,请勿随意输入敏感生物医学资料除非完全信任对应服务平台的安全措施。 ```python # 示例代码片段展示如何克隆仓库至本地以便进一步研究或修改默认参数设置 !git clone https://github.com/sokrypton/ColabFold.git %cd ColabFold/ !pip install -r requirements.txt ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这个人很懒,还没有设置昵称...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值