传入数据用tensor,传入形状用FloatTensor
1. 小写的tensor:接受数据
2. 大写的Tensor()或者FloatTensor():接受的是shape,数据的维度
# 2 import from list
# 传入数据用tensor,传入形状用FloatTensor
# 小写的tensor接受数据,
# 大写的Tensor()或者FloatTensor()接受的是shape,数据的维度
b = torch.tensor([2., 3.2])
print(b)
# out:tensor([2.0000, 3.2000])
b = torch.FloatTensor([2., 3.2])
print(b)
# out:tensor([2.0000, 3.2000])
# 少用,容易混淆:也可以接受数据,在列表里面,
b = torch.FloatTensor(2, 3) # 两行三列
print(b)
# out:tensor([[1.0790e-43, 0.0000e+00, 1.4013e-45],
# [0.0000e+00, 1.4013e-45, 0.0000e+00]])
b = torch.tensor([[2., 3.2], [1., 22.3]])
print(b)
# tensor([[ 2.0000, 3.2000],
# [ 1.0000, 22.3000]])
参考: https://blog.csdn.net/weixin_39450145/category_9627197.html
本文详细解析了PyTorch中Tensor与FloatTensor的使用区别,小写tensor用于接收具体数值数据,而大写Tensor()或FloatTensor()则用于指定数据的形状和维度。通过实例演示了如何正确应用这两种类型,对于初学者理解PyTorch数据处理流程有重要指导意义。
704

被折叠的 条评论
为什么被折叠?



