小写的tensor接受数据,大写的Tensor()接受的是shape,数据的维度

本文详细解析了PyTorch中Tensor与FloatTensor的使用区别,小写tensor用于接收具体数值数据,而大写Tensor()或FloatTensor()则用于指定数据的形状和维度。通过实例演示了如何正确应用这两种类型,对于初学者理解PyTorch数据处理流程有重要指导意义。

传入数据用tensor,传入形状用FloatTensor

 

1.  小写的tensor:接受数据

2.  大写的Tensor()或者FloatTensor():接受的是shape,数据的维度

# 2 import from list
# 传入数据用tensor,传入形状用FloatTensor
# 小写的tensor接受数据,
# 大写的Tensor()或者FloatTensor()接受的是shape,数据的维度

b = torch.tensor([2., 3.2])
print(b)
# out:tensor([2.0000, 3.2000])
 
b = torch.FloatTensor([2., 3.2])
print(b)
# out:tensor([2.0000, 3.2000])
# 少用,容易混淆:也可以接受数据,在列表里面,

b = torch.FloatTensor(2, 3)  # 两行三列
print(b)
# out:tensor([[1.0790e-43, 0.0000e+00, 1.4013e-45],
#         [0.0000e+00, 1.4013e-45, 0.0000e+00]])

b = torch.tensor([[2., 3.2], [1., 22.3]])
print(b)
# tensor([[ 2.0000,  3.2000],
#         [ 1.0000, 22.3000]])

 

参考: https://blog.csdn.net/weixin_39450145/category_9627197.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_39450145

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值