机器学习实战之分类算法(K-近邻/朴素贝叶斯/决策树/随机森林)

机器学习分类算法

1. 机器学习算法简介

学习目标:
    说明机器学习算法监督学习与无监督学习的区别
    说明机器学习算法目标值的两种数据类型
    说明监督学习中的分类、回归特点
    说明机器学习(数据挖掘)的开发流程
    知道数据集的分为训练集和测试集
    知道sklearn的转换器和估计器流程
    了解sklearn的分类、回归数据集
    说明K-近邻算法的距离公式
    说明K-近邻算法的超参数K值以及取值问题
    说明K-近邻算法的优缺点
    应用KNeighborsClassifier实现分类
    了解分类算法的评估标准准确率
    说明朴素贝叶斯算法的原理
    说明朴素贝叶斯算法的优缺点
    应用MultinomialNB实现文本分类
    应用模型选择与调优
    说明决策树算法的原理
    说明决策树算法的优缺点
    应用DecisionTreeClassifier实现分类
    说明随机森林算法的原理
    说明随机森林算法的优缺点
    应用RandomForestClassifier实现分类

1.1 按照学习方式分类

监督学习(supervised learning)(预测)
        定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
        分类: k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
        回归: 线性回归、岭回归
        标注 隐马尔可夫模型 (不做要求)
无监督学习(unsupervised learning)
        定义:输入数据是由输入特征值所组成。
        聚类 k-means
半监督和强化学习

1.2 区别

在这里插入图片描述

1.3 关于监督学习中的分类与回归区别

在这里插入图片描述
两种数据类型:
        离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所有这些数据全部都是整数,而且不能再细分,也不能进一步提高他们的精确度。
        连续型数据:变量可以在某个范围内取任一数,即变量的取值可以是连续的,如,长度、时间、质量值等,这类整数通常是非整数,含有小数部分。

注:只要记住一点,离散型是区间内不可分,连续型是区间内可分

在这里插入图片描述
在这里插入图片描述
结合刚才讲过的数据类型,针对这两个例子的输出结果,得出结论

分类:目标值数据类型为离散型
        分类是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成为分类问题,最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果;
回归:目标值数据类型为连续型
        回归是监督学习的另一个重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值。

1.4 机器学习开发流程

在这里插入图片描述

2. 数据集介绍与划分

学习目标:
    知道数据集的分为训练集和测试集
    知道sklearn的分类、回归数据集
划分比例:
    训练集:70% 80% 75%
    测试集:30% 20% 30%

API:
sklearn.model_selection.train_test_split(arrays, *options)
    x 数据集的特征值
    y 数据集的标签值
    test_size 测试集的大小,一般为float
    random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
    return ,测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
结合后面的数据集作介绍

2.1 sklearn数据集介绍

2.1.1 分类和回归数据集

(1)分类数据集
在这里插入图片描述
sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
    subset: ‘train’或者’test’,‘all’,可选,选择要加载的数据集.训练集的“训练”,测试集的“测试”,两者的“全部”
在这里插入图片描述

2.1.2 API

sklearn.datasets     加载获取流行数据集
datasets.load_()
    获取小规模数据集,数据包含在datasets里
datasets.fetch_
(data_home=None)
    获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/

2.1.3 返回类型

load和fetch返回的数据类型datasets.base.Bunch(字典格式)
    data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
    target:标签数组,是 n_samples 的一维     numpy.ndarray 数组
    DESCR:数据描述
    feature_names:特征名,新闻数据,手写数字、回归数据集没有
    target_names:标签名

2.1.4 代码分析

from sklearn.datasets import load_iris, load_boston, fetch_20newsgroups
from sklearn.model_selection import train_test_split, GridSearchCV
#分类数据集
lr = load_iris()
# print("特征值", lr.data)
# print("目标值", lr.target)
# #print(lr.DESCR)
# print(lr.feature_names)
# print(lr.target_names)
#
# #回归数据集
# lb = load_boston()
# print("特征值:", lb.data)
# print("目标值:", lb.target)
#
# #数据量比较大的数据集
# news = fetch_20newsgroups(subset='all')
# print(news.data)
# print(news.target)
#
# #进行数据集的训练集和测试集划分
# #返回值有四个部分接收
# #x,y 特征值和目标值,train ,test训练集和测试集
# #x_train,x_test,y_train,y_test
x_train, x_test, y_train, y_test = train_test_split(lr.data, lr.target, test_size=0.3)

print("训练集的特征值:", x_train)
print("测试集的特征值", x_test)
print("训练集的目标值:", y_train)
print("测试集的目标值", y_test)

输出结果:

/home/yuyang/anaconda3/envs/tensor1-6/bin/python3.5 "/media/yuyang/Yinux/heima/Machine learning/demo.py"
训练集的特征值: [[5.2 3.4 1.4 0.2]
 [6.3 2.8 5.1 1.5]
 [6.9 3.1 4.9 1.5]
 [5.8 2.7 3.9 1.2]
 [5.2 4.1 1.5 0.1]
 [5.9 3.2 4.8 1.8]
 [5.8 2.8 5.1 2.4]
 .......................
 [4.9 3.1 1.5 0.1]
测试集的特征值 [[6.5 3.  5.2 2. ]
 [5.7 4.4 1.5 0.4]
 ......................
 [5.7 2.6 3.5 1. ]]
训练集的目标值: [0 2 1 1 0 1 2 0 2 2 2 1 2 1 2 0 1 2 2 2 1 0 1 1 1 2 2 1 0 2 1 2 2 1 0 2 0
 1 1 2 0 0 1 0 0 1 2 0 0 2 0 0 1 0 1 0 0 0 0 1 1 0 1 2 1 2 1 2 2 2 2 0 2 2
 1 1 0 0 2 0 0 1 0 1 2 0 0 2 2 0 1 2 0 1 1 1 2 2 0 2 0 2 2 2 0]
测试集的目标值 [2 0 1 1 1 1 2 0 0 0 2 2 0 0 0 1 2 2 0 0 2 1 1 1 1 0 0 1 2 1 1 1 0 0 2 2 2
 1 2 1 0 0 1 1 1]

Process finished with exit code 0

2.2 转换器和估计器

2.2.1转换器

想一下之前做的特征工程的步骤?

1、实例化 (实例化的是一个转换器类(Transformer))
2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)
我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式

fit_transform
fit
transform
这几个方法之间的区别是什么呢?我们看以下代码就清楚了

In [1]: from sklearn.preprocessing import StandardScaler

In [2]: std1 = StandardScaler()

In [3]: a = [[1,2,3], [4,5,6]]

In [4]: std1.fit_transform(a)
Out[4]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

In [5]: std2 = StandardScaler()

In [6]: std2.fit(a)
Out[6]: StandardScaler(copy=True, with_mean=True, with_std=True)

In [7]: std2.transform(a)
Out[7]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

从中可以看出,fit_transform的作用相当于transform加上fit。但是为什么还要提供单独的fit呢, 我们还是使用原来的std2来进行标准化看看

In [8]: b = [[7,8,9], [10, 11, 12]]

In [9]: std2.transform(b)
Out[9]:
array([[3., 3., 3.],
       [5., 5., 5.]])

In [10]: std2.fit_transform(b)
Out[10]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])`

注:此例说明
fit_transform=fit + transform
fit_transform(a):标准化:以自己a的平均值标准差转换自己
fit(a):计算a的平均值和标准差,transform(b):以a的平均值和标准差去转换b
适用于特征选择,主成分分析,特征抽取

2.2.2 估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

1、用于分类的估计器:
        sklearn.neighbors k-近邻算法
        sklearn.naive_bayes 贝叶斯
        sklearn.linear_model.LogisticRegression 逻辑回归
        sklearn.tree 决策树与随机森林
2、用于回归的估计器:
        sklearn.linear_model.LinearReg        ression 线性回归
        sklearn.linear_model.Ridge 岭回归
3、用于无监督学习的估计器

2.2.3 估计器工作流程

        sklearn.cluster.KMeans 聚类
在这里插入图片描述
estimator估计器:实现了大部分算法
        fit():训练集训练
        predict,score预测,准确率

3. K-近邻算法

学习目标:
        说明K-近邻算法的距离公式
        说明K-近邻算法的超参数K值以及取值问题
        说明K-近邻算法的优缺点
        应用KNeighborsClassifier实现分类
        了解分类算法的评估标准准确率
应用
        Facebook签到位置预测
什么是K-近邻算法
在这里插入图片描述
你的“邻居”来推断出你的类别

3.1K-近邻算法(KNN)

3.1.1 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

3.1.2 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离
在这里插入图片描述

3.2 电影类型分析

假设我们有现在几部电影
在这里插入图片描述
其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想
在这里插入图片描述
用?的特征值,和其它6部电影计算距离.eg:(3-18)^ 2 +(104-90)^ 2=20.5

3.3 K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
        n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
        algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

3.4 案例:预测签到位置

kaggle大赛
在这里插入图片描述
数据介绍:

train.csv,test.csv 
row_id:登记事件的ID
xy:坐标
准确性:定位准确性 
时间:时间戳
place_id:业务的ID,这是您预测的目标

3.4.1 分析

对于数据做一些基本处理(这里所做的一些处理不一定达到很好的效果,我们只是简单尝试,有些特征我们可以根据一些特征选择的方式去做处理)

1、缩小数据集范围 DataFrame.query()

2、处理日期数据 pd.to_datetime pd.DatetimeIndex

3、增加分割的日期数据

4、删除没用的日期数据 DataFrame.drop

5、将签到位置少于n个用户的删除

place_count = data.groupby(‘place_id’).count()

tf = place_count[place_count.row_id > 3].reset_index()

data = data[data[‘place_id’].isin(tf.place_id)]

3.4.2 代码

from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd

def knncls():
    '''
    K-近邻算法预测用户查询的业务
    :return:
    '''
    data = pd.read_csv("./data/facebook-v-predicting-check-ins/train.csv")
    #print(data)
    #1.缩小数据范围
    data = data.query('x>1.0 & x<1.25 & y>2.5 & y<2.75')

    #3.把签到位置小于N个人的位置给删除掉
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    #4.分割数据集到训练集和测试集
    #取出特征值和目标值
    #y = data[['place_id']]            #目标值
    y = data['place_id'] #一维数据
    x = data[['x', 'y', 'accuracy', 'time']]
    x_train, x_test ,y_train, y_test = train_test_split(x, y, test_size=0.3)

    #进行数据的标准化处理,测试集和训练集分开标准化
    std = StandardScaler()

    #对训练集的特征值作标准化处理
    x_train = std.fit_transform(x_train)

    #对测试集的特征值作标准化处理
    x_test = std.fit_transform(x_test)
    #5应用网格搜索+交叉验证-K近邻算法去进行调优
    knn = KNeighborsClassifier(n_neighbors=5)

    #利用fit和predict或者score
    knn.fit(x_train, y_train)

    #预测测试集的所办业务类型
    y_pridict = knn.predict(x_test)
    print("k近邻算法预测的这些时间的业务类型", y_pridict)
    print("k近邻预测的准确率为:", knn.score(x_test, y_test))
    return None

if __name__=='__main__':
    knncls()

输出结果:

k近邻算法预测的这些时间的业务类型 [6399991653 5606572086 6399991653 ... 9237487147 6424972551 8780655195]
k近邻预测的准确率为: 0.5120173364854216
Process finished with exit code 0

3.4.3 结果分析

1、k值取多大?有什么影响?
k值取很小:容易受到异常点的影响

k值取很大:受到样本均衡的问题

2、性能问题?
距离计算上面,时间复杂度高

3.5 总结

优点:
        简单,易于理解,易于实现,无需训练
缺点:
        懒惰算法,对测试样本分类时的计算量大,内存开销大
        必须指定K值,K值选择不当则分类精度不能保证
使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

4 模型选择与调优

目标
        说明交叉验证过程
        说明超参数搜索过程
        应用GridSearchCV实现算法参数的调优
应用
        Facebook签到位置预测调优

4.1 为什么需要交叉验证

交叉验证目的:为了让被评估的模型更加准确可信.

4.2 什么是交叉验证(cross validation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
分析:
我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理

训练集:训练集+验证集
测试集:测试集

在这里插入图片描述
问题:如何给模型选择最好的参数呢?

4.3 超参数搜索-网格搜索(Grid Search)

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
在这里插入图片描述API:
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
        对估计器的指定参数值进行详尽搜索
        estimator:估计器对象
        param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
        cv:指定几折交叉验证
        fit:输入训练数据
        score:准确率
        结果分析:
                bestscore:在交叉验证中验证的最好结果
                bestestimator:最好的参数模型
                cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

4.4 Facebook签到位置预测K值调优

代码:

from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd

def knncls():
    '''
    K-近邻算法预测用户查询的业务
    :return:
    '''
    data = pd.read_csv("./data/facebook-v-predicting-check-ins/train.csv")
    #print(data)
    #1.缩小数据范围
    data = data.query('x>1.0 & x<1.25 & y>2.5 & y<2.75')

    #3.把签到位置小于N个人的位置给删除掉
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    #4.分割数据集到训练集和测试集
    #取出特征值和目标值
    #y = data[['place_id']]  #目标值,这样写y是二维数据,knn允许训练,但gc不行,所以写成1维数据
    y = data['place_id'] #一维数据
    x = data[['x', 'y', 'accuracy', 'time']]
    x_train, x_test ,y_train, y_test = train_test_split(x, y, test_size=0.3)

    #进行数据的标准化处理,测试集和训练集分开标准化
    std = StandardScaler()

    #对训练集的特征值作标准化处理
    x_train = std.fit_transform(x_train)

    #对测试集的特征值作标准化处理
    x_test = std.fit_transform(x_test)
    #5应用网格搜索+交叉验证-K近邻算法去进行调优
    knn = KNeighborsClassifier(n_neighbors=5)

    #构造超参数字典
    #对knn来讲,数据量比较大,k =根号(样本)
    param = {"n_neighbors": [1, 3, 5, 7, 10]}

    #估计器是knn;为了看到效果,cv = 2, 通常会选择10
    gc = GridSearchCV(knn, param_grid=param, cv=2)

    #gc想当于被包裹的estimator,fit输入数据,进行训练
    gc.fit(x_train, y_train)

    #查看模型超参数调优的过程,交叉验证的结果
    print("在2折交叉验证当中最好的结果:",gc.best_score_)
    print("选择的最好的模型参数是:", gc.best_estimator_)
    print("每次交叉验证的验证集的预测结果:", gc.cv_results_)

    #预测测试集的准确率
    print("在测试集当中的最终预测结果为:", gc.score(x_test, y_test))

    return None

if __name__=='__main__':
    knncls()

输出结果:

交叉验证当中最好的结果: 0.5160445870629962
选择的最好的模型参数是: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=None, n_neighbors=10, p=2,
           weights='uniform')
每次交叉验证的验证集的预测结果: {
'mean_test_score': array([0.44983955, 0.47829758, 0.5052356 , 0.51418679, 0.51604459]), 
'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 10], dtype=object), 
            'split1_train_score': array([1.        , 0.66376715, 0.6239545 , 0.6022081 , 0.57176313]), 
            'split0_train_score': array([1.        , 0.67360164, 0.62653479, 0.6026603 , 0.58475443]),         
            'split1_test_score': array([0.45310368, 0.48209413, 0.51432469, 0.52353342, 0.52557981]),
            'split0_test_score': array([0.44663767, 0.47457344, 0.49631984, 0.5050184 , 0.5066912 ]), .........................dtype=int32)}
在测试集当中的最终预测结果为: 0.5486603624901497

Process finished with exit code 0

5.朴素贝叶斯算法

学习目标:
    说明条件概率与联合概率
    说明贝叶斯公式、以及特征独立的关系
    记忆贝叶斯公式
    知道拉普拉斯平滑系数
    应用贝叶斯公式实现概率的计算
应用
    20类新闻文章分类预测

5.1 什么是朴素贝叶斯分类方法

在这里插入图片描述
在这里插入图片描述

5.2 概率基础

5.2.1 概率(Probability)定义

概率定义为一件事情发生的可能性
    扔出一个硬币,结果头像朝上
    某天是晴天
P(X) : 取值在[0, 1]

5.2.2 女神是否喜欢计算案例

在讲这两个概率之前我们通过一个例子,来计算一些结果:
在这里插入图片描述
问题如下:在这里插入图片描述

  1. P(喜欢) = 4/7
  2. P(程序员, 体型匀称) = P(程序员)P(体型匀称)=3/7 * 4/7 =12/49
  3. P(程序员|喜欢) = 1/2
  4. P(产品,超重|喜欢) = 1/2 * 1/4 = 1/8

5.2.3 条件概率与联合概率

联合概率:包含多个条件,且所有条件同时成立的概率
    记作:P(A,B)
    特性:P(A, B) = P(A)P(B)
条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
    记作:P(A|B) = P(AB)/P(B)
    特性:P(A1,A2|B) = P(A1|B)P(A2|B)

注意:此条件概率的成立,是由于A1,A2相互独立的结果(记忆)

这样我们计算结果为:

p(程序员, 匀称) =  P(程序员)P(匀称) =3/7*(4/7) = 12/49 
P(产品, 超重|喜欢) = P(产品|喜欢)P(超重|喜欢)=1/2 *  1/4 = 1/8

在这里插入图片描述
这个了类似一个条件概率,那么仔细一想,给定文章其实相当于给定什么?结合前面我们将文本特征抽取的时候讲的?所以我们可以理解为:
在这里插入图片描述

5.3 贝叶斯公式

5.3.1 公式

在这里插入图片描述
在这里插入图片描述
公式分为三个部分:

    P©:每个文档类别的概率(某文档类别数/总文档数量)
    P(W│C):给定类别下特征(被预测文档中出现的词)的概率
        计算方法:P(F1│C)=Ni/N (训练文档中去计算)
                Ni为该F1词在C类别所有文档中出现的次数
                N为所属类别C下的文档所有词出现的次数和
                P(F1,F2,…) 预测文档中每个词的概率

P(科技|文章1) = P(词1, 词2,词3....词n|科技)P(科技)/P((词1, 词2,词3....词n)
P(娱乐|文章1) = P(词1, 词2,词3....词n|娱乐)P(娱乐))/P((词1, 词2,词3....词n)

5.3.2 文章分类计算

假设我们从训练数据集得到如下信息:
在这里插入图片描述
计算结果:

科技:P(科技|影院,支付宝,云计算) = 
?(影院,支付宝,云计算|科技)∗P(科技)=
(8/100)∗(20/100)∗(63/100)∗(30/90) = 0.00456109

娱乐:P(娱乐|影院,支付宝,云计算) = 
?(影院,支付宝,云计算|娱乐)∗P(娱乐)=
(56/121)∗(15/121)∗(0/121)∗(60/90) = 0

思考:我们计算出来某个概率为0,合适吗?

5.3.3 拉普拉斯平滑系数

目的:防止计算出的分类概率为0
在这里插入图片描述

P(娱乐|影院,支付宝,云计算) =
P(影院,支付宝,云计算|娱乐)P(娱乐) =
P(影院|娱乐)*P(支付宝|娱乐)*P(云计算|娱乐)P(娱乐)=
(56+1/121+4)(15+1/121+4)(0+1/121+1*4)(60/90) = 0.00002

5.3.4 API

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
        朴素贝叶斯分类
        alpha:拉普拉斯平滑系数

5.4 案例:20类新闻分类

在这里插入图片描述

5.4.1 分析

分割数据集

tfidf进行的特征抽取

朴素贝叶斯预测

5.4.2 代码

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

def nbcls():
    """
    朴素贝叶斯对新闻数据集进行预测
    :return:
    """
    # 获取新闻的数据,20个类别,包含特征值和目标值
    news = fetch_20newsgroups(subset='all')

    # 进行数据集分割
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.3)

    # 对于文本数据,进行特征抽取
    tfidf = TfidfVectorizer()

    x_train = tfidf.fit_transform(x_train)
    # 这里打印出来的列表是:训练集当中的所有不同词的组成的一个列表
    a = tfidf.get_feature_names()
    # print(x_train.toarray())

    # 不能调用fit_transform,否则会出错,用x_train去转换,因为预测文档是基于训练集预测的
    x_test = tfidf.transform(x_test)
    b = tfidf.get_feature_names()

    #print(a==b) #a!=b
    # estimator估计器流程
    mlb = MultinomialNB(alpha=1.0)

    mlb.fit(x_train, y_train)

    # 进行预测
    y_predict = mlb.predict(x_test)

    print("预测每篇文章的类别:", y_predict[:50]) #打印前50个
    print("真实类别为:", y_test[:50])      #打印前50个

    print("预测准确率为:", mlb.score(x_test, y_test))

    return None

if __name__=='__main__':
    nbcls()

输出结果:

预测每篇文章的类别: [11 10  8 13 13 13  0  7 11  7  2  7 10 13 10  9 15  9 16  4 17 16 11 10
  2  0  9  2 10  3 14  4 14 14 12 14 18  8  0  6  6  2  4  4  2 13 11 13
 10 15]
真实类别为: [11 10  8 13 13  5  0  7 11  7  2  7 10 13 10  9 15  9 16  4 17 19 12 10
  4  0  9  2 10  3 14  4 14 14  3 14 18  8  0  6  6  2  4  4  5 13 11 13
 10 11]
预测准确率为: 0.8542624690484613

Process finished with exit code 0

5.5 总结

优点:
        朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
        对缺失数据不太敏感,算法也比较简单,常用于文本分类。
        分类准确度高,速度快
缺点:
        由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好

6.决策树

目标:
        说明信息熵的公式以及作用
        说明信息增益的公式作用
        应用信息增益实现计算特征的不确定性减少程度
        了解决策树的三种算法实现
应用:
        泰坦尼克号乘客生存预测
        怎么理解这句话?通过一个对话例子

6.1 认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法

怎么理解这句话?通过一个对话例子

在这里插入图片描述

想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!

6.2 决策树分类原理详解

为了更好理解决策树具体怎么分类的,我们通过一个问题例子?
在这里插入图片描述
问题:如何对这些客户进行分类预测?你是如何去划分?
有可能你的划分是这样的
在这里插入图片描述
那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的
在这里插入图片描述

6.2.1 原理

信息熵、信息增益等

6.2.2 信息熵

那来玩个猜测游戏,猜猜这32支球队那个是冠军。并且猜测错误付出代价。每猜错一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军? (前提是:不知道任意球队的信息、历史比赛记录、实力等)

在这里插入图片描述
为了使代价最小,可以使用二分法猜测:

我可以把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,就可以知道结果。
在这里插入图片描述
我们来看这个式子:
        32支球队,log32=5比特
        64支球队,log64=6比特
在这里插入图片描述
香农指出,它的准确信息量应该是,p为每个球队获胜的概率(假设概率相等,都为1/32),我们不用钱去衡量这个代价了,香浓指出用比特:

H = -(p1logp1 + p2logp2 + ... + p32log32) = - log32
6.2.2.1 信息熵的定义

H的专业术语称之为信息熵,单位为比特。
在这里插入图片描述
“谁是世界杯冠军”的信息量应该比5比特少,特点(重要):

        当这32支球队夺冠的几率相同时,对应的信息熵等于5比特
        只要概率发生任意变化,信息熵都比5比特大

6.2.2.2 总结(重要)

信息和消除不确定性是相联系的
        当我们得到的额外信息(球队历史比赛情况等等)越多的话,那么我们猜测的代价越小(猜测的不确定性减小)

问题: 回到我们前面的贷款案例,怎么去划分?可以利用当得知某个特征(比如是否有房子)之后,我们能够减少的不确定性大小。越大我们可以认为这个特征很重要。那怎么去衡量减少的不确定性大小呢?

6.2.3 决策树的划分依据之一------信息增益

6.2.3.1 定义与公式

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

在这里插入图片描述
公式的详细解释:

在这里插入图片描述
在这里插入图片描述

注:信息增益表示得知特征X的信息而息的不确定性减少的程度使得类Y的信息熵减少的程度
6.2.3.2 贷款特征重要计算

在这里插入图片描述
我们以年龄特征来计算:

1、g(D, 年龄) = H(D) -H(D|年龄) = 0.971-[5/15H(青年)+5/15H(中年)+5/15H(老年]

2、H(D) = -(6/15log(6/15)+9/15log(9/15))=0.971

3、H(青年) = -(3/5log(3/5) +2/5log(2/5))
H(中年)=-(3/5log(3/5) +2/5log(2/5))
H(老年)=-(4/5og(4/5)+1/5log(1/5))

6.2.4 决策树的三种算法实现

决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似。
ID3:
        信息增益 最大的准则
C4.5:
        信息增益比 最大的准则
CART:
        分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的默认原则
        优势:划分更加细致(从后面例子的树显示来理解)

6.2.5 决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
        决策树分类器
        criterion:默认是’基尼’系数,也可以选择信息增益的熵’entropy’
        max_depth:树的深度大小
        random_state:随机数种子
其中会有些超参数:max_depth:树的深度大小
        其它超参数结合随机森林讲解

6.3 案例:泰坦尼克号乘客生存预测

泰坦尼克号数据:
        在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。
1、乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。
2、其中age数据存在缺失。

原始数据
在这里插入图片描述

6.3.1 分析

选择我们认为重要的几个特征 [‘pclass’, ‘age’, ‘sex’]
填充缺失值
特征中出现类别符号,需要进行one-hot编码处理(DictVectorizer)
        x.to_dict(orient=“records”) 需要将数组特征转换成字典数据
数据集划分
决策树分类预测

6.3.2 保存树的结构到dot文件

1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式
        tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
2、工具:(能够将dot文件转换为pdf、png)
        安装graphviz
        ubuntu:sudo apt-get install graphviz Mac:brew install graphviz
3、运行命令
        然后我们运行这个命令
        dot -Tpng tree.dot -o tree.png

6.3.3 代码

from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import pandas as pd


def decisioncls():
    """
    决策树进行泰坦尼克号乘客生存预测
    :return:
    """
    # 1、获取数据
    taitan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 2、数据的处理
    x = taitan[['pclass', 'age', 'sex']]

    y = taitan['survived']
    #print(x, y)
    # 填充,缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
    x['age'].fillna(x['age'].mean(), inplace=True)

    #特征类别数据————>one-hot编码
    dic = DictVectorizer(sparse=False)

    # 对于x转换成字典数据x.to_dict(orient="records");将存储多个用户数据的二维数数组转换为字典
    # [["lst","29","femal"],[]]---->[{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]
    #再进行one-hot编码
    x = dic.fit_transform(x.to_dict(orient="records"))

    print(dic.get_feature_names())
    print(x)

    # 3.分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

    # 4.进行决策树的建立和预测
    dc = DecisionTreeClassifier(max_depth=5)

    dc.fit(x_train, y_train)

    print("决策树预测的准确率为:", dc.score(x_test, y_test))

    #导出到dot文件
    export_graphviz(dc, out_file="./tree.dot",
                    feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    return None

if __name__=='__main__':
    decisioncls()

输出结果:

['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
[[29.          1.          0.          0.          1.          0.        ]
 [ 2.          1.          0.          0.          1.          0.        ]
 [30.          1.          0.          0.          0.          1.        ]
 ...
 [31.19418104  0.          0.          1.          0.          1.        ]
 [31.19418104  0.          0.          1.          1.          0.        ]
 [31.19418104  0.          0.          1.          0.          1.        ]]
决策树预测的准确率为: 0.8350253807106599

Process finished with exit code 0

决策树png:
在这里插入图片描述

6.4 总结

优点:
        简单的理解和解释,树木可视化。
缺点:
        决策树学习不能很好地推广数据的过于复杂的树,这被称为过拟合。
改进:
        减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)

注:企业用决策树算法,由于决策树很好的分析能力,在决策过程应用较多, 可以选择特征

7. 集成学习方法之随机森林

学习目标:
        说名随机森林每棵决策树的建立过程
        知道为什么需要随机有放回(Bootstrap)的抽样
        说明随机森林的超参数
应用
        泰坦尼克号乘客生存预测

7.1 什么是集成学习方法

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

7.2 什么是随机森林

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

在这里插入图片描述
例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终投票结果就是True

在这里插入图片描述

7.3 随机森林原理过程

学习算法根据下列算法而建造每棵树:

        用N来表示训练用例(样本)的个数,M表示特征数目。
                1、一次随机选出一个样本,重复N次, (有可能出现重复的样本)
                2、随机去选出m个特征, m <<M,建立决策树
        采取bootstrap抽样

7.3.1 为什么采用BootStrap抽样

为什么要随机抽样训练集?  
        如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
为什么要有放回地抽样?
        如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

7.3.2 API

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)

        随机森林分类器
        n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
        criteria:string,可选(default =“gini”)分割特征的测量方法
        max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
        max_features="auto”,每个决策树的最大特征数量
                If “auto”, then max_features=sqrt(n_features).
                If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).
                If “log2”, then max_features=log2(n_features).
                If None, then max_features=n_features.
        bootstrap:boolean,        optional(default = True)是否在构建树时使用放回抽样
        min_samples_split:节点划分最少样本数
        min_samples_leaf:叶子节点的最小样本数
超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf

7.3.3 代码

from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


def randomforest():
    """
    随机森林进行泰坦尼克号乘客生存预测
    :return:
    """
    # 1、获取数据
    taitan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 2、数据的处理
    x = taitan[['pclass', 'age', 'sex']]
    y = taitan['survived']
    #print(x, y)
    # 填充,缺失值需要处理,将特征当中有类别的这些特征进行字典特征抽取
    x['age'].fillna(x['age'].mean(), inplace=True)

    #特征类别数据————>one-hot编码
    dic = DictVectorizer(sparse=False)

    # 对于x转换成字典数据x.to_dict(orient="records");将存储多个用户数据的二维数数组转换为字典
    # [["lst","29","femal"],[]]---->[{"pclass": "1st", "age": 29.00, "sex": "female"}, {}]
    #再进行one-hot编码
    x = dic.fit_transform(x.to_dict(orient="records"))

    # 3.分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

    rf = RandomForestClassifier()

    # 6. 构造超参数字典
    param = {"n_estimators": [120, 200, 300, 500, 1000, 1200],
             "max_depth": [5, 8, 15, 25, 30],
             "min_samples_split": [2, 3, 5]}

    # 交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)
    gc.fit(x_train, y_train)

    print("随机森林的准确率:", gc.score(x_test, y_test))
    print("随机森林选择的参数:", gc.best_estimator_)

    return None

if __name__=='__main__':
    randomforest()

输出结果:

随机森林的准确率: 0.8121827411167513
随机森林选择的参数: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=5, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=3,
            min_weight_fraction_leaf=0.0, n_estimators=120, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False)

Process finished with exit code 0

7.4 总结

在当前所有算法中,具有极好的准确率.
能够有效地运行在大数据集上,处理具有高维特征的输入样本,而且不需要降维.
能够评估各个特征在分类问题上的重要性.

  • 7
    点赞
  • 98
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值